11 research outputs found

    Homogeneous nucleation of quark-gluon plasma, finite size effects and long-lived metastable objects

    Get PDF
    The general formalism of homogeneous nucleation theory is applied to study the hadronization pattern of the ultra-relativistic quark-gluon plasma (QGP) undergoing a first order phase transition. A coalescence model is proposed to describe the evolution dynamics of hadronic clusters produced in the nucleation process. The size distribution of the nucleated clusters is important for the description of the plasma conversion. The model is most sensitive to the initial conditions of the QGP thermalization, time evolution of the energy density, and the interfacial energy of the plasma-hadronic matter interface. The rapidly expanding QGP is first supercooled by about ΔT=TTc=46\Delta T = T - T_c = 4-6 %. Then it reheats again up to the critical temperature T_c. Finally it breaks up into hadronic clusters and small droplets of plasma. This fast dynamics occurs within the first 510fm/c5-10 fm/c. The finite size effects and fluctuations near the critical temperature are studied. It is shown that a drop of longitudinally expanding QGP of the transverse radius below 4.5 fm can display a long-lived metastability. However, both in the rapid and in the delayed hadronization scenario, the bulk pion yield is emitted by sources as large as 3-4.5 fm. This may be detected experimentally both by a HBT interferometry signal and by the analysis of the rapidity distributions of particles in narrow p_T-intervals at small p_T on an event-by-event basis.Comment: 29 pages, incl. 12 figures and 1 table; to be published in Phys. Rev.

    Optimization of radially heterogenous 1000-MW(e) LMFBR core configurations. Appendix C. Research project 620-25

    No full text
    A parameter study was conducted to determine the interrelated effects of: loosely or tightly coupled fuel regions separated by internal blanket assemblies, number of fuel regions, core height, number and arrangement of internal blanket subassemblies, number and size of fuel pins in a subassembly, etc. The effects of these parameters on sodium void reactivity, Doppler, incoherence, breeding gain, and thermohydraulics were of prime interest. Trends were established and ground work laid for optimization of a large, radially-heterogeneous, LMFBR core that will have low energetics in an HCDA and will have good thermal and breeding performance

    Optimization of radially heterogeneous 1000-MW(e) LMFBR core configurations. Appendixes D and E. Research project 620-25

    No full text
    A parameter study was conducted to determine the interrelated effects of: loosely or tightly coupled fuel regions separated by internal blanket assemblies, number of fuel regions, core height, number and arrangement of internal blanket subassemblies, number and size of fuel pins in a subassembly, etc. the effects of these parameters on sodium void reactivity, Doppler, incoherence, breeding gain, and thermohydraulics were of prime interest. Trends were established and ground work laid for optimization of a large, radially-heterogeneous, LMFBR core that will have low energetics in an HCDA and will have good thermal and breeding performance
    corecore