226 research outputs found

    Near-Infrared Fluorescent Proteins and Their Applications

    Get PDF
    High transparency, low light-scattering, and low autofluorescence of mammalian tissues in the near-infrared (NIR) spectral range (650-900 nm) open a possibility for in vivo imaging of biological processes at the micro-and macroscales to address basic and applied problems in biology and biomedicine. Recently, probes that absorb and fluoresce in the NIR optical range have been engineered using bacterial phytochromes-natural NIR light-absorbing photoreceptors that regulate metabolism in bacteria. Since the chromophore in all these proteins is biliverdin, a natural product of heme catabolism in mammalian cells, they can be used as genetically encoded fluorescent probes, similarly to GFP-like fluorescent proteins. In this review, we discuss photophysical and biochemical properties of NIR fluorescent proteins, reporters, and biosensors and analyze their characteristics required for expression of these molecules in mammalian cells. Structural features and molecular engineering of NIR fluorescent probes are discussed. Applications of NIR fluorescent proteins and biosensors for studies of molecular processes in cells, as well as for tissue and organ visualization in whole-body imaging in vivo, are described. We specifically focus on the use of NIR fluorescent probes in advanced imaging technologies that combine fluorescence and bioluminescence methods with photoacoustic tomography.Peer reviewe

    Near-Infrared Fluorescent Proteins : Multiplexing and Optogenetics across Scales

    Get PDF
    Since mammalian tissue is relatively transparent to near-infrared (NIR) light, NIR fluorescentproteins(FPs) engineeredfrombacterialphytochromeshave become widely used probes for non-invasive in vivo imaging. Recently, these genetically encoded NIR probes have been substantially improved, enabling imaging experiments that were not possible previously. Here, we discuss the use of monomeric NIR FPs and NIR biosensors for multiplexed imaging with common visible GFP-based probes and blue light-activatable optogenetic tools. These NIR probes are suitable for visualization of functional activities from molecular to organismal levels. In combination with advanced imaging techniques, such as two-photon microscopy with adaptive optics, photoacoustic tomography and its recent modification reversibly switchable photoacoustic computed tomography, NIR probes allow subcellular resolution at millimeter depths.Peer reviewe

    Stabilization of structure in near-infrared fluorescent proteins by binding of biliverdin chromophore

    Get PDF
    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes and their mutants with different location of Cys residues, which able to bind a biliverdin chromophore, or without these Cys residues were studied using intrinsic tryptophan fluorescence, NIR fluorescence and circular dichroism. It was shown that a covalent binding of the biliverdin chromophore to a Cys residue via thioether group substantially stabilizes the spatial structure of NIR FPs. The stability of the protein structure and the chromophore association strength strongly depends on the location of Cys residues and decreases in the following order: a protein with Cys residues in both domains, a protein with Cys in PAS domains, and a protein with Cys in GAF domains. NIR FPs without Cys residues capable to covalently attach biliverdin have the lowest stability, comparable to NIR FP apoforms. (C) 2016 Elsevier B.V. All rights reserved.Peer reviewe

    Near-infrared bioluminescent proteins for two-color multimodal imaging

    Get PDF
    Bioluminescence imaging became a widely used technique for noninvasive study of biological processes in small animals. Bioluminescent probes with emission in near-infrared (NIR) spectral region confer the advantage of having deep tissue penetration capacity. However, there are a very limited number of currently available luciferases that exhibit NIR bioluminescence. Here, we engineered two novel chimeric probes based on RLuc8 luciferase fused with iRFP670 and iRFP720 NIR fluorescent proteins. Due to an intramolecular bioluminescence resonance energy transfer (BRET) between RLuc8 and iRFPs, the chimeric luciferases exhibit NIR bioluminescence with maxima at 670 nm and 720 nm, respectively. The 50 nm spectral shift between emissions of the two iRFP chimeras enables combined multicolor bioluminescence imaging (BLI) and the respective multicolor fluorescence imaging (FLI) of the iRFPs. We show that for subcutaneously implanted cells, NIR bioluminescence provided a 10-fold increase in sensitivity compared to NIR FLI. In deep tissues, NIR BLI enabled detection of as low as 10(4) cells. Both BLI and FLI allowed monitoring of tumor growth and metastasis from early to late stages. Multimodal imaging, which combines concurrent BLI and FLI, provides continuous spatiotemporal analysis of metastatic cells in animals, including their localization and quantification.Peer reviewe

    Photophysical Properties of Fluorescent Probe Thioflavin T in Crowded Milieu

    Get PDF
    Thioflavin T (ThT) is a widely used fluorescent probe of amyloid fibrils, which accompanies many serious neurodegenerative and other diseases. Until recently, examinations of processes of amyloid fibril formation in vitro were conducted in solutions whose properties were significantly different from those found inside the densely packed cells. Such crowded cellular milieu is typically simulated in vitro using concentrated solutions of inert polymers, which do not usually interact with proteins. However, these crowding agents can have a direct effect on the ThT molecule, and this effect must be taken into account. We examined the influence of PEG-400, PEG-12000, and Dextran-70 on the photophysical properties of ThT. It was shown that these crowding agents caused the red shift of the absorption, fluorescence excitation, and fluorescence spectra of ThT. Under these conditions, the increases of the molar extinction coefficient, fluorescence quantum yield, and excitation lifetime of ThT are also observed. However, these changes are significantly less pronounced than those observed for ThT bound to fibrils. It is concluded that, despite some effects of crowding agents on intrinsic fluorescent properties of ThT, this dye can be used as a probe of structure and formation of amyloid fibrils in crowded milieu in vitro

    Interaction of Biliverdin Chromophore with Near-Infrared Fluorescent Protein BphP1-FP Engineered from Bacterial Phytochrome

    Get PDF
    Near-infrared (NIR) fluorescent proteins (FPs) designed from PAS (Per-ARNT-Sim repeats) and GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA transcriptional activator) domains of bacterial phytochromes covalently bind biliverdin (BV) chromophore via one or two Cys residues. We studied BV interaction with a series of NIR FP variants derived from the recently reported BphP1-FP protein. The latter was engineered from a bacterial phytochrome RpBphP1, and has two reactive Cys residues (Cys15 in the PAS domain and Cys256 in the GAF domain), whereas its mutants contain single Cys residues either in the PAS domain or in the GAF domain, or no Cys residues. We characterized BphP1-FP and its mutants biochemically and spectroscopically in the absence and in the presence of denaturant. We found that all BphP1-FP variants are monomers. We revealed that spectral properties of the BphP1-FP variants containing either Cys15 or Cys256, or both, are determined by the covalently bound BV chromophore only. Consequently, this suggests an involvement of the inter-monomeric allosteric effects in the BV interaction with monomers in dimeric NIR FPs, such as iRFPs. Likely, insertion of the Cys15 residue, in addition to the Cys256 residue, in dimeric NIR FPs influences BV binding by promoting the BV chromophore covalent cross-linking to both PAS and GAF domains.Peer reviewe

    The unfolding of iRFP713 in a crowded milieu

    Get PDF
    The exploring of biological processes in vitro under conditions of macromolecular crowding is a way to achieve an understanding of how these processes occur in vivo. In this work, we study the unfolding of the fluorescent probe iRFP713 in crowded environment in vitro. Previously, we showed that the unfolding of the dimeric iRFP713 is accompanied by the formation of a compact monomer and an intermediate state of the protein. In the intermediate state, the macromolecules of iRFP713 have hydrophobic clusters exposed to the surface of the protein and are prone to aggregation. Concentrated solutions of polyethylene glycol (PEG-8000), Dextran-40 and Dextran-70 with a molecular mass of 8000, 40000 and 70000 Da, respectively, were used to model the conditions for macromolecular crowding. A limited available space provided by all the crowding agents used favors to the enhanced aggregation of iRFP713 in the intermediate state at the concentration of guanidine hydrochloride (GdnHCl), at which the charge of protein surface is neutralized by the guanidine cations. This is in line with the theory of the excluded volume. In concentrated solutions of the crowding agents (240–300 mg/ml), the stabilization of the structure of iRFP713 in the intermediate state is observed. PEG-8000 also enhances the stability of iRFP713 in the monomeric compact state, whereas in concentrated solutions of Dextran-40 and Dextran-70 the resistance of the protein in the monomeric state against GdnHCl-induced unfolding decreases. The obtained data argues for the excluded volume effect being not the only factor that contributes the behavior of biological molecules in a crowded milieu. Crowding agents do not affect the structure of the native dimer of iRFP713, which excludes the direct interactions between the target protein and the crowding agents. PEGs of different molecular mass and Dextran-40/Dextran-70 are known to influence the solvent properties of water. The solvent dipolarity/polarizability and basicity/acidity in aqueous solutions of these crowding agents vary in different ways. The change of the solvent properties in aqueous solutions of crowding agents might impact the functioning of a target protein

    Differences in the Pathways of Proteins Unfolding Induced by Urea and Guanidine Hydrochloride: Molten Globule State and Aggregates

    Get PDF
    It was shown that at low concentrations guanidine hydrochloride (GdnHCl) can cause aggregation of proteins in partially folded state and that fluorescent dye 1-anilinonaphthalene-8-sulfonic acid (ANS) binds with these aggregates rather than with hydrophobic clusters on the surface of protein in molten globule state. That is why the increase in ANS fluorescence intensity is often recorded in the pathway of protein denaturation by GdnHCl, but not by urea. So what was previously believed to be the molten globule state in the pathway of protein denaturation by GdnHCl, in reality, for some proteins represents the aggregates of partially folded molecules

    Spectral Properties of Thioflavin T and Its Complexes with Amyloid Fibrils

    Get PDF
    Comparative analysis of the absorption and fluorescence spectra and fluorescence excitation spectra of thioflavin T (ThT) in various solvents and in the composition of amyloid fibrils has shown that ThT, when excited in the region of the long-wavelength absorption band, fluoresces in the spectral region with a maximum at 478–484 nm. The appearance in aqueous and alcohol solutions of a fluorescence band with a maximum near 440 nm has been attributed to the presence in the composition of the ThT preparations of an impurity with an absorption band in the 340–350-nm range. The literature data showing that in glycerol ThT has a wide fluorescence spectrum with two maxima are due to the artifact connected with the use of a high concentration of the dye. It has been suggested that the cause of the low quantum yield of ThT aqueous and alcohol solutions is the breakage of the system of conjugated bonds due to the reorientation of the benzothiozole and benzaminic rings of ThT in the excited state with respect to one another. The main factor determining the high quantum yield of fluorescence of ThT incorporated in fibrils is the steric restriction of the rotation of the rings about one another under these conditions. The suggestions made have been verified by the quantum-chemical calculation of the ThT molecule geometry in the ground and excited states
    • …
    corecore