28 research outputs found

    Postnatal development of articular cartilage

    Get PDF
    Articular cartilage (AC) is the thin layer of tissue that covers the ends of the bones in the synovial joints in mammals. Functional adult AC has depth-dependent mechanical properties that are not yet present at birth. These depth-dependent mechanical properties in adult life are the result of a depth-dependent composition and structure that develops in postnatal life. Our knowledge on how postnatal AC remodelling proceeds, and how the functional depth-dependent mechanical properties develop in postnatal life is still limited. In this thesis, we investigated the properties of the postnatal collagen network in AC, and the contribution of postnatal collagen network remodelling to the adult depth-dependent mechanical properties of AC. We used horses and (mostly) sheep as experimental animals to obtain measurements on three parameters of the postnatal collagen network (predominant collagen fibril orientation, collagen densities and collagen network anisotropy). We used a composition-based finite element model for computational analysis of the role of this collagen network in the postnatal development of depth-dependent mechanical properties. We first investigated how collagen structure in AC affects the parameters that are measured by quantitative polarised light microscopy (qPLM), because qPLM is the most popular technique to investigate properties of the collagen network in AC. We quantified the contributions of the three collagen network parameters (orientation, density and anisotropy) to the measured predominant fibril orientation and the measured total tissue birefringence (retardance), and showed that collagen network anisotropy can be quantified when the retardance from polarised light microscopy is corrected for collagen densities. In the study on horses, we investigated differences in predominant collagen orientation for equine articular cartilage in stillborn and adult animals with scanning electron microscopy and quantitative polarised light microscopy (qPLM). In the study on sheep, we first investigated the predominant collagen orientation in animals divided over ten sample points between birth and maturity (72 weeks) with qPLM. Both studies confirmed the remark by Archer et al. [Archer2003] that the collagen fibrils in perinatal animals lie predominantly parallel to the articular surface, and we confirmed and quantified the adult 'Benninghoff' structure in the mature animals in both studies. We further observed a transitional layer with weak fibril anisotropy in the perinatal animals that is not correlated to changes in predominant collagen fibril orientation as in the adult Benninghoff structure. To investigate the contribution of collagen reorientation to the development of depth-dependent mechanical properties, we implemented the results on postnatal predominant collagen fibril orientation in the sheep in a composition-based finite element model. We described the interactions between collagen orientation, free swelling strains, osmotic pressures and effective AC stiffness in confined compression. Based on the results, we hypothesised that collagen densities increase most in the deep tissue due to increased collagen fibril strains that result from postnatal collagen fibril reorientation. In sheep, we measured collagen densities with Fourier transform infrared micro-spectroscopy. Collagen density increased in postnatal life, and they increased most in the deep tissue (near the bone), which supported our earlier hypothesis. Perinatal animals showed a valley in collagen densities near the articular surface, i.e. at the position of the transitional layer. We showed that this valley disappears in early postnatal life. We corrected the qPLM retardance from our sheep data with the collagen densities from the sheep data to assess collagen network anisotropy. The results showed that anisotropy is relatively constant in the deep tissue, and that anisotropy is stronger in the transitional layer of perinatal animals compared with the transitional layer of adult animals. To investigate interactions in postnatal collagen network remodelling, we implemented the three collagen network parameters (orientation, density and anisotropy) that we obtained from the sheep in the finite element model. Based on the results, we suggested different functional roles for the three collagen network parameters: collagen fibril reorientation contributes most to the development of depth-dependent mechanical properties, collagen density increases appear to equalise collagen fibril strains, and the weak anisotropy in the transitional layer appears to smooth gradients in the mechanical state of the tissue in adult animals. <br/

    Contribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage

    Get PDF
    The collagen fibril network is an important factor for the depth-dependent mechanical behaviour of adult articular cartilage (AC). Recent studies show that collagen orientation is parallel to the articular surface throughout the tissue depth in perinatal animals, and that the collagen orientations transform to a depth-dependent arcade-like structure in adult animals. Current understanding on the mechanobiology of postnatal AC development is incomplete. In the current paper, we investigate the contribution of collagen fibril orientation changes to the depth-dependent mechanical properties of AC. We use a composition-based finite element model to simulate in a 1-D confined compression geometry the effects of ten different collagen orientation patterns that were measured in developing sheep. In initial postnatal life, AC is mostly subject to growth and we observe only small changes in depth-dependent mechanical behaviour. Functional adaptation of depth-dependent mechanical behaviour of AC takes place in the second half of life before puberty. Changes in fibril orientation alone increase cartilage stiffness during development through the modulation of swelling strains and osmotic pressures. Changes in stiffness are most pronounced for small stresses and for cartilage adjacent to the bone. We hypothesize that postnatal changes in collagen fibril orientation induce mechanical effects that in turn promote these changes. We further hypothesize that a part of the depth-dependent postnatal increase in collagen content in literature is initiated by the depth-dependent postnatal increase in fibril strain due to collagen fibril reorientatio

    Contribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage

    No full text
    The collagen fibril network is an important factor for the depth-dependent mechanical behaviour of adult articular cartilage (AC). Recent studies show that collagen orientation is parallel to the articular surface throughout the tissue depth in perinatal animals, and that the collagen orientations transform to a depth-dependent arcade-like structure in adult animals. Current understanding on the mechanobiology of postnatal AC development is incomplete. In the current paper, we investigate the contribution of collagen fibril orientation changes to the depth-dependent mechanical properties of AC. We use a composition-based finite element model to simulate in a 1-D confined compression geometry the effects of ten different collagen orientation patterns that were measured in developing sheep. In initial postnatal life, AC is mostly subject to growth and we observe only small changes in depth-dependent mechanical behaviour. Functional adaptation of depth-dependent mechanical behaviour of AC takes place in the second half of life before puberty. Changes in fibril orientation alone increase cartilage stiffness during development through the modulation of swelling strains and osmotic pressures. Changes in stiffness are most pronounced for small stresses and for cartilage adjacent to the bone. We hypothesize that postnatal changes in collagen fibril orientation induce mechanical effects that in turn promote these changes. We further hypothesize that a part of the depth-dependent postnatal increase in collagen content in literature is initiated by the depth-dependent postnatal increase in fibril strain due to collagen fibril reorientatio

    Modeling optical behavior of birefringent biological tissues for evaluation of quantitative polarized light microscopy

    No full text
    Quantitative polarized light microscopy (qPLM) is a popular tool for the investigation of birefringent architectures in biological tissues. Collagen, the most abundant protein in mammals, is such a birefringent material. Interpretation of results of qPLM in terms of collagen network architecture and anisotropy is challenging, because different collagen networks may yield equal qPLM results. We created a model and used the linear optical behavior of collagen to construct a Jones or Mueller matrix for a histological cartilage section in an optical qPLM train. Histological sections of tendon were used to validate the basic assumption of the model. Results show that information on collagen densities is needed for the interpretation of qPLM results in terms of collagen anisotropy. A parameter that is independent of the optical system and that measures collagen fiber anisotropy is introduced, and its physical interpretation is discussed. With our results, we can quantify which part of different qPLM results is due to differences in collagen densities and which part is due to changes in the collagen network. Because collagen fiber orientation and anisotropy are important for tissue function, these results can improve the biological and medical relevance of qPLM result
    corecore