26,423 research outputs found

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 2: The design process

    Get PDF
    The extent to which IPAD is to support the design process is identified. Case studies of representative aerospace products were developed as models to characterize the design process and to provide design requirements for the IPAD computing system

    G28.17+0.05: An unusual giant HI cloud in the inner Galaxy

    Get PDF
    New 21 cm HI observations have revealed a giant HI cloud in the Galactic plane that has unusual properties. It is quite well defined, about 150 pc in diameter at a distance of 5 kpc, and contains as much as 100,000 Solar Masses of atomic hydrogen. The outer parts of the cloud appear in HI emission above the HI background, while the central regions show HI self-absorption. Models which reproduce the observations have a core with a temperature <40 K and an outer envelope as much as an order of magnitude hotter. The cold core is elongated along the Galactic plane, whereas the overall outline of the cloud is approximately spherical. The warm and cold parts of the HI cloud have a similar, and relatively large, line width of approximately 7 km/s. The cloud core is a source of weak, anomalously-excited 1720 MHz OH emission, also with a relatively large line width, which delineates the region of HI self-absorption but is slightly blue-shifted in velocity. The intensity of the 1720 MHz OH emission is correlated with N(H) derived from models of the cold core. There is 12CO emission associated with the cloud core. Most of the cloud mass is in molecules, and the total mass is > 200,000 Solar Masses. In the cold core the HI mass fraction may be 10 percent. The cloud has only a few sites of current star formation. There may be about 100 more objects like this in the inner Galaxy; every line of sight through the Galactic plane within 50 degrees of the Galactic center probably intersects at least one. We suggest that G28.17+0.05 is a cloud being observed as it enters a spiral arm and that it is in the transition from the atomic to the molecular state.Comment: 35 pages, inludes 12 figure

    Curvature Dependence of Peaks in the Cosmic Microwave Background Distribution

    Get PDF
    The widely cited formula 1200Ω01/2\ell_1\simeq 200 \Omega_0^{-1/2} for the multipole number of the first Doppler peak is not even a crude approximation in the case of greatest current interest, in which the cosmic mass density is less than the vacuum energy density. For instance, with ΩM\Omega_M fixed at 0.3, the position of any Doppler peak varies as Ω01.58\Omega_0^{-1.58} near Ω0=1\Omega_0=1.Comment: 7 pages, Late

    Superfluid Density in a Highly Underdoped YBCO Superconductor

    Full text link
    The superfluid density rho_s(T) = 1/lambda^2(T) has been measured at 2.64 GHz in highly underdoped YBCO, at 37 dopings with T_c between 3 K and 17 K. Within limits set by the transition width Delta T_c ~ 0.4 K, rho_s(T) shows no evidence of critical fluctuations as T goes to T_c, with a mean-field-like transition and no indication of vortex unbinding. Instead, we propose that rho_s displays the behaviour expected for a quantum phase transition in the (3 + 1)-dimensional XY universality class, with rho_s0 ~ (p - p_c), T_c ~ (p - p_c)^1/2 and rho_s(T) ~ (T_c - T)^1 as T goes to T_c.Comment: 4 pages, 5 figures; final version of pape

    Hawking Radiation via Tunneling from Hot NUT-Kerr-Newman-Kasuya Spacetime

    Full text link
    We study the Hawking thermal spectrum in dragging coordinate system and the tunneling radiation characteristics of hot NUT-Kerr-Newman-Kasuya spacetime. The tunneling rates at the event and cosmological horizon are found to be related to the change of Bekenstein-Hawking entropy. The radiation spectrum is not pure thermal and thus there is a correction to the Hawking thermal spectrum.Comment: To appear in Class. Quant. Gra

    Dynamics of a Quantum Reference Frame

    Get PDF
    We analyze a quantum mechanical gyroscope which is modeled as a large spin and used as a reference against which to measure the angular momenta of spin-1/2 particles. These measurements induce a back-action on the reference which is the central focus of our study. We begin by deriving explicit expressions for the quantum channel representing the back-action. Then, we analyze the dynamics incurred by the reference when it is used to sequentially measure particles drawn from a fixed ensemble. We prove that the reference thermalizes with the measured particles and find that generically, the thermal state is reached in time which scales linearly with the size of the reference. This contrasts a recent conclusion of Bartlett et al. that this takes a quadratic amount of time when the particles are completely unpolarized. We now understand their result in terms of a simple physical principle based on symmetries and conservation laws. Finally, we initiate the study of the non-equilibrium dynamics of the reference. Here we find that a reference in a coherent state will essentially remain in one when measuring polarized particles, while rotating itself to ultimately align with the polarization of the particles

    Autocatalytic plume pinch-off

    Full text link
    A localized source of buoyancy flux in a non-reactive fluid medium creates a plume. The flux can be provided by either heat, a compositional difference between the fluid comprising the plume and its surroundings, or a combination of both. For autocatalytic plumes produced by the iodate-arsenous acid reaction, however, buoyancy is produced along the entire reacting interface between the plume and its surroundings. Buoyancy production at the moving interface drives fluid motion, which in turn generates flow that advects the reaction front. As a consequence of this interplay between fluid flow and chemical reaction, autocatalytic plumes exhibit a rich dynamics during their ascent through the reactant medium. One of the more interesting dynamical features is the production of an accelerating vortical plume head that in certain cases pinches-off and detaches from the upwelling conduit. After pinch-off, a new plume head forms in the conduit below, and this can lead to multiple generations of plume heads for a single plume initiation. We investigated the pinch-off process using both experimentation and simulation. Experiments were performed using various concentrations of glycerol, in which it was found that repeated pinch-off occurs exclusively in a specific concentration range. Autocatalytic plume simulations revealed that pinch-off is triggered by the appearance of accelerating flow in the plume conduit.Comment: 10 figures. Accepted for publication in Phys Rev E. See also http://www.physics.utoronto.ca/nonlinear/papers_chemwave.htm

    Supernovae as a probe of particle physics and cosmology

    Get PDF
    It has very recently been demonstrated by Csaki, Kaloper and Terning (CKT) that the faintness of supernovae at high redshift can be accommodated by mixing of a light axion with the photon in the presence of an intergalactic magnetic field, as opposed to the usual explanation of an accelerating universe by a dark energy component. In this paper we analyze further aspects of the CKT mechanism and its generalizations. The CKT mechanism also passes various cosmological constraints from the fluctuations of the CMB and the formation of structure at large scales, without requiring an accelerating phase in the expansion of the Universe. We investigate the statistical significance of current supernova data for pinning down the different components of the cosmological energy-momentum tensor and for probing physics beyond the standard models.Comment: 17 pages, LaTeX, 4 figures; v2: typos corrected, minor changes, references added; v3: updated figures, details regarding fits include

    A Fresh Look at Axions and SN 1987A

    Get PDF
    We re-examine the very stringent limits on the axion mass based on the strength and duration of the neutrino signal from SN 1987A, in the light of new measurements of the axial-vector coupling strength of nucleons, possible suppression of axion emission due to many-body effects, and additional emission processes involving pions. The suppression of axion emission due to nucleon spin fluctuations induced by many-body effects degrades previous limits by a factor of about 2. Emission processes involving thermal pions can strengthen the limits by a factor of 3-4 within a perturbative treatment that neglects saturation of nucleon spin fluctuations. Inclusion of saturation effects, however, tends to make the limits less dependent on pion abundances. The resulting axion mass limit also depends on the precise couplings of the axion and ranges from 0.5x10**(-3) eV to 6x10**(-3) eV.Comment: 32 latex pages, 13 postscript figures included, uses revtex.sty, submitted to Physical Review
    corecore