55,292 research outputs found

    Interacting Unities: An Agent-Based System

    Get PDF
    Recently architects have been inspired by Thompsonis Cartesian deformations and Waddingtonis flexible topological surface to work within a dynamic field characterized by forces. In this more active space of interactions, movement is the medium through which form evolves. This paper explores the interaction between pedestrians and their environment by regarding it as a process occurring between the two. It is hypothesized that the recurrent interaction between pedestrians and environment can lead to a structural coupling between those elements. Every time a change occurs in each one of them, as an expression of its own structural dynamics, it triggers changes to the other one. An agent-based system has been developed in order to explore that interaction, where the two interacting elements, agents (pedestrians) and environment, are autonomous units with a set of internal rules. The result is a landscape where each agent locally modifies its environment that in turn affects its movement, while the other agents respond to the new environment at a later time, indicating that the phenomenon of stigmergy is possible to take place among interactions with human analogy. It is found that it is the environmentis internal rules that determine the nature and extent of change

    Classifying vortices in S= 3 Bose-Einstein condensates

    Get PDF
    Motivated by the recent realization of a 52^{52}Cr Bose-Einstein condensate, we consider the phase diagram of a general spin-three condensate as a function of its scattering lengths. We classify each phase according to its ``reciprocal spinor,'' using a method developed in a previous work. We show that such a classification can be naturally extended to describe the vortices for a spinor condensate by using the topological theory of defects. To illustrate, we systematically describe the types of vortex excitations for each phase of the spin-three condensate

    Information extraction techniques for multispectral scanner data

    Get PDF
    The applicability of recognition-processing procedures for multispectral scanner data from areas and conditions used for programming the recognition computers to other data from different areas viewed under different measurement conditions was studied. The reflective spectral region approximately 0.3 to 3.0 micrometers is considered. A potential application of such techniques is in conducting area surveys. Work in three general areas is reported: (1) Nature of sources of systematic variation in multispectral scanner radiation signals, (2) An investigation of various techniques for overcoming systematic variations in scanner data; (3) The use of decision rules based upon empirical distributions of scanner signals rather than upon the usually assumed multivariate normal (Gaussian) signal distributions

    The Extraordinary Infrared Spectrum of NGC 1222 (Mkn 603)

    Full text link
    The infrared spectra of starburst galaxies are dominated by the low-excitation lines of [NeII] and [SIII], and the stellar populations deduced from these spectra appear to lack stars larger than about 35 Msun. The only exceptions to this result until now were low metallicity dwarf galaxies. We report our analysis of the mid-infrared spectra obtained with IRS on Spitzer of the starburst galaxy NGC 1222 (Mkn 603). NGC 1222 is a large spheroidal galaxy with a starburst nucleus that is a compact radio and infrared source, and its infrared emission is dominated by the [NeIII] line. This is the first starburst of solar or near-solar metallicity, known to us, which is dominated by the high-excitation lines and which is a likely host of high mass stars. We model the emission with several different assumptions as to the spatial distibution of the high- and low-excitation lines and find that the upper mass cutoff in this galaxy is 40-100 Msun.Comment: accepted, Astronomical Journal. 29 pp, 4 figures. In replacement version an acknowledgment to NRAO is adde

    Parameterization of Dark-Energy Properties: a Principal-Component Approach

    Full text link
    Considerable work has been devoted to the question of how to best parameterize the properties of dark energy, in particular its equation of state w. We argue that, in the absence of a compelling model for dark energy, the parameterizations of functions about which we have no prior knowledge, such as w(z), should be determined by the data rather than by our ingrained beliefs or familiar series expansions. We find the complete basis of orthonormal eigenfunctions in which the principal components (weights of w(z)) that are determined most accurately are separated from those determined most poorly. Furthermore, we show that keeping a few of the best-measured modes can be an effective way of obtaining information about w(z).Comment: Unfeasibility of a truly model-independent reconstruction of w at z>1 illustrated. f(z) left out, and w(z) discussed in more detail. Matches the PRL versio

    The PL calibration for Milky Way Cepheids and its implications for the distance scale

    Full text link
    The rationale behind recent calibrations of the Cepheid PL relation using the Wesenheit formulation is reviewed and reanalyzed, and it is shown that recent conclusions regarding a possible change in slope of the PL relation for short-period and long-period Cepheids are tied to a pathological distribution of HST calibrators within the instability strip. A recalibration of the period-luminosity relation is obtained using Galactic Cepheids in open clusters and groups, the resulting relationship, described by log L/L_sun = 2.415(+-0.035) + 1.148(+-0.044)log P, exhibiting only the moderate scatter expected from color spread within the instability strip. The relationship is confirmed by Cepheids with HST parallaxes, although without the need for Lutz-Kelker corrections, and in general by Cepheids with revised Hipparcos parallaxes, albeit with concerns about the cited precisions of the latter. A Wesenheit formulation of Wv = -2.259(+-0.083) - 4.185(+-0.103)log P for Galactic Cepheids is tested successfully using Cepheids in the inner regions of the galaxy NGC 4258, confirming the independent geometrical distance established for the galaxy from OH masers. Differences between the extinction properties of interstellar and extragalactic dust may yet play an important role in the further calibration of the Cepheid PL relation and its application to the extragalactic distance scale.Comment: Accepted for Publication (Astrophysics & Space Science
    • …
    corecore