345 research outputs found
The physical and emotional results of hysterectomy
Our interest in the physical and emotional results of hysterectomy was stimulated by recent letters in the British Medical Journal concerning the psychological preparation of patients for hysterectomy and especially by Or. K. Dalton's dismal picture of the aftermath of the operation. In our practices we deal mainly with a rural community in the Eastern Cape consisting of wool, apple and citrus farmers and their families. This report is a follow-up of patients treated by hysterectomy during the last 5 years
The spectroscopic parameters of sodium cyanide, NaCN (X 1A'), revisited
The study of the rotational spectrum of NaCN (X A') has recently been
extended in frequency and in quantum numbers. Difficulties have been
encountered in fitting the transition frequencies within experimental
uncertainties. Various trial fits traced the difficulties to the incomplete
diagonalization of the Hamiltonian. Employing fewer spectroscopic parameters
than before, the transition frequencies could be reproduced within experimental
uncertainties on average. Predictions of -type -branch transitions with
up to 570 GHz should be reliable to better than 1 MHz. In addition,
modified spectroscopic parameters have been derived for the 13C isotopic
species of NaCN.Comment: 5 pages, no figure, J. Mol. Spectrosc., appeared; CDMS links update
Stronger computational modelling of signalling pathways using both continuous and discrete-state methods
Starting from a biochemical signalling pathway model expresses in a process algebra enriched with quantitative information, we automatically derive both continuous-space and discrete-space representations suitable for numerical evaluation. We compare results obtained using approximate stochastic simulation thereby exposing a flaw in the use of the differentiation procedure producing misleading results
Cosmological Magnetic Fields from Primordial Helicity
Primordial magnetic fields may account for all or part of the fields observed
in galaxies. We consider the evolution of the magnetic fields created by
pseudoscalar effects in the early universe. Such processes can create
force-free fields of maximal helicity; we show that for such a field magnetic
energy inverse cascades to larger scales than it would have solely by flux
freezing and cosmic expansion. For fields generated at the electroweak phase
transition, we find that the predicted wavelength today can in principle be as
large as 10 kpc, and the field strength can be as large as 10^{-10} G.Comment: 13 page
Magnetic fields in the early universe in the string approach to MHD
There is a reformulation of magnetohydrodynamics in which the fundamental
dynamical quantities are the positions and velocities of the lines of magnetic
flux in the plasma, which turn out to obey equations of motion very much like
ideal strings. We use this approach to study the evolution of a primordial
magnetic field generated during the radiation-dominated era in the early
Universe. Causality dictates that the field lines form a tangled random
network, and the string-like equations of motion, plus the assumption of
perfect reconnection, inevitably lead to a self-similar solution for the
magnetic field power spectrum. We present the predicted form of the power
spectrum, and discuss insights gained from the string approximation, in
particular the implications for the existence or not of an inverse cascade.Comment: 12 pages, 2 figure
Magnetized cosmological perturbations
A large-scale cosmic magnetic field affects not only the growth of density
perturbations, but also rotational instabilities and anisotropic deformation in
the density distribution. We give a fully relativistic treatment of all these
effects, incorporating the magneto-curvature coupling that arises in a
relativistic approach. We show that this coupling produces a small enhancement
of the growing mode on superhorizon scales. The magnetic field generates new
nonadiabatic constant and decaying modes, as well as nonadiabatic corrections
to the standard growing and decaying modes. Magnetized isocurvature
perturbations are purely decaying on superhorizon scales. On subhorizon scales
before recombination, magnetized density perturbations propagate as
magneto-sonic waves, leading to a small decrease in the spacing of acoustic
peaks. Fluctuations in the field direction induce scale-dependent vorticity,
and generate precession in the rotational vector. On small scales, magnetized
density vortices propagate as Alfv\'{e}n waves during the radiation era. After
recombination, they decay slower than non-magnetized vortices. Magnetic
fluctuations are also an active source of anisotropic distortion in the density
distribution. We derive the evolution equations for this distortion, and find a
particular growing solution.Comment: Revised version, typos corrected, to appear in Phys. Rev.
From microscopic to macroscopic descriptions of cell\ud migration on growing domains
Cell migration and growth are essential components of the development of multicellular organisms. The role of various cues in directing cell migration is widespread, in particular, the role of signals in the environment in the control of cell motility and directional guidance. In many cases, especially in developmental biology, growth of the domain also plays a large role in the distribution of cells and, in some cases, cell or signal distribution may actually drive domain growth. There is a ubiquitous use of partial differential equations (PDEs) for modelling the time evolution of cellular density and environmental cues. In the last twenty years, a lot of attention has been devoted to connecting macroscopic PDEs with more detailed microscopic models of cellular motility, including models of directional sensing and signal transduction pathways. However, domain growth is largely omitted in the literature. In this paper, individual-based models describing cell movement and domain growth are studied, and correspondence with a macroscopic-level PDE describing the evolution of cell density is demonstrated. The individual-based models are formulated in terms of random walkers on a lattice. Domain growth provides an extra mathematical challenge by making the lattice size variable over time. A reaction-diffusion master equation formalism is generalised to the case of growing lattices and used in the derivation of the macroscopic PDEs
SPIDER: Probing the Early Universe with a Suborbital Polarimeter
We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a
divergence-free polarization pattern ("B-modes") in the Cosmic Microwave
Background (CMB). In the inflationary scenario, the amplitude of this signal is
proportional to that of the primordial scalar perturbations through the
tensor-to-scalar ratio r. We show that the expected level of systematic error
in the SPIDER instrument is significantly below the amplitude of an interesting
cosmological signal with r=0.03. We present a scanning strategy that enables us
to minimize uncertainty in the reconstruction of the Stokes parameters used to
characterize the CMB, while accessing a relatively wide range of angular
scales. Evaluating the amplitude of the polarized Galactic emission in the
SPIDER field, we conclude that the polarized emission from interstellar dust is
as bright or brighter than the cosmological signal at all SPIDER frequencies
(90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the
"Southern Hole." We show that two ~20-day flights of the SPIDER instrument can
constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when
foreground contamination is taken into account. In the absence of foregrounds,
the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight
schedule updated, two typos fixed in Table 2, references and minor
clarifications added, results unchange
Discrete symmetries, invisible axion and lepton number symmetry in an economic 3-3-1 model
We show that Peccei-Quinn and lepton number symmetries can be a natural
outcome in a 3-3-1 model with right-handed neutrinos after imposing a Z_11 x
Z_2 symmetry. This symmetry is suitably accommodated in this model when we
augmented its spectrum by including merely one singlet scalar field. We work
out the breaking of the Peccei-Quinn symmetry, yielding the axion, and study
the phenomenological consequences. The main result of this work is that the
solution to the strong CP problem can be implemented in a natural way, implying
an invisible axion phenomenologically unconstrained, free of domain wall
formation and constituting a good candidate for the cold dark matter.Comment: 17 pages, Revtex
The First Magnetic Fields
We review current ideas on the origin of galactic and extragalactic magnetic
fields. We begin by summarizing observations of magnetic fields at cosmological
redshifts and on cosmological scales. These observations translate into
constraints on the strength and scale magnetic fields must have during the
early stages of galaxy formation in order to seed the galactic dynamo. We
examine mechanisms for the generation of magnetic fields that operate prior
during inflation and during subsequent phase transitions such as electroweak
symmetry breaking and the quark-hadron phase transition. The implications of
strong primordial magnetic fields for the reionization epoch as well as the
first generation of stars is discussed in detail. The exotic, early-Universe
mechanisms are contrasted with astrophysical processes that generate fields
after recombination. For example, a Biermann-type battery can operate in a
proto-galaxy during the early stages of structure formation. Moreover, magnetic
fields in either an early generation of stars or active galactic nuclei can be
dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also
downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
- …