69,396 research outputs found
Thermocouple assembly Patent
Design and characteristics of thermocouples consisting of flexible tape for improved attachment to temperature sourc
MORALE AND FACULTY DEVELOPMENT IN AGRICULTURAL ECONOMICS: DISCUSSION
Teaching/Communication/Extension/Profession,
Lessons Learned in Over 31 Years in Agricultural Economics
Teaching/Communication/Extension/Profession,
A representation of the natural numbers by means of cycle-numbers, with consequences in number theory
In this paper we give rules for creating a number triangle T in a manner analogous to that for producing Pascal's arithmetic triangle; but all of its elements belong to {0, 1}, and cycling of its rows is involved in the creation. The method of construction of any one row of T from its preceding rows will be defined, and that, together with starting and boundary conditions, will suffice to define the whole triangle, by sequential continuation. We shall use this triangle in order to define the so-called cycle-numbers, which can be mapped to the natural numbers. T will be called the 'cyclenumber triangle'. First we shall give some theorems about relationships between the cyclenumbers and the natural numbers, and discuss the cycling of patterns within the triangle's rows and diagonals. We then begin a study of figures (i.e. (0,1)- patterns, found on lines, triangles and squares, etc.) within T. In particular, we shall seek relationships which tell us something about the prime numbers. For our later studies, we turn the triangle onto its side and work with a doubly-infinite matrix C. We shall find that a great deal of cycling of figures occurs within T and C, and we exploit this fact whenever we can. The phenomenon of cycling patterns leads us to muse upon a 'music of the integers', indeed a 'symphony of the integers', being played out on the cycle-number triangle or on C. Like Pythagoras and his 'music of the spheres', we may well be the only persons capable of hearing it!
Weed control strategies in organically grown carrots
This paper outlines a study to integrate elements of cultural, thermal and mechanical control methods in the production of late maincrop drilled organic carrots. Agronomic and economic findings are discusse
Horticultural weed control in organic systems – a modelling approach
This report was presented at the UK Organic Research 2002 Conference. Weed control is an important yet mainly unaddressed research issue in organic systems. At present there is little agronomic support to underpin weed management decisions. Computer modelling and simulation techniques may provide a valuable tool for understanding the nature and processes of the organic system thus generating knowledge and information of direct benefit to growers, which will aid in short and long term weed management strategies
- …