199 research outputs found

    A coherent middle Pliocene magnetostratigraphy, Wanganui Basin, New Zealand

    Get PDF
    We document magnetostratigraphies for three river sections (Turakina, Rangitikei, Wanganui) in Wanganui Basin and interpret them as corresponding to the Upper Gilbert, the Gauss and lower Matuyama Chrons of the Geomagnetic Polarity Timescale, in agreement with foraminiferal biostratigraphic datums. The Gauss-Gilbert transition (3.58 Ma) is located in both the Turakina and Wanganui River sections, while the Gauss-Matuyama transition (2.58 Ma) is located in all three sections, as are the lower and upper boundaries of the Mammoth (3.33–3.22 Ma) and Kaena (3.11–3.04 Ma) Subchrons. Our interpretations are based in part on the re-analysis of existing datasets and in part on the acquisition and analysis of new data, particularly for the Wanganui River section. The palaeomagnetic dates of these six horizons provide the only numerical age control for a thick (up to 2000 m) mudstone succession (Tangahoe Mudstone) that accumulated chiefly in upper bathyal and outer neritic palaeoenvironments. In the Wanganui River section the mean sediment accumulation rate is estimated to have been about 1.8 m/k.y., in the Turakina section it was about 1.5 m/k.y., and in the Rangitikei section, the mean rate from the beginning of the Mammoth Subchron to the Hautawa Shellbed was about 1.1 m/k.y. The high rates may be associated with the progradation of slope clinoforms northward through the basin. This new palaeomagnetic timescale allows revised correlations to be made between cyclothems in the Rangitikei River section and the global Oxygen Isotope Stages (OIS) as represented in Ocean Drilling Program (ODP) Site 846. The 16 depositional sequences between the end of the Mammoth Subchron and the Gauss-Matuyama Boundary are correlated with OIS MG2 to 100. The cyclothems average 39 k.y. in duration in our age model, which is close to the 41 k.y. duration of the orbital obliquity cycles. We support the arguments advanced recently in defence of the need for local New Zealand stages as a means of classifying New Zealand sedimentary successions, and strongly oppose the proposal to move stage boundaries to selected geomagnetic polarity transitions. The primary magnetisation of New Zealand mudstone is frequently overprinted with secondary components of diagenetic origin, and hence it is often difficult to obtain reliable magnetostratigraphic records. We suggest specific approaches, analytical methods, and criteria to help ensure robustness and coherency in the palaeomagnetic identification of chron boundaries in typical New Zealand Cenozoic mudstone successions

    Geomagnetic investigations of some recent British sediments

    Get PDF
    In order to study the geomagnetic secular variation in Britain during the past 10000 years six metre and one metre long cores of post -Glacial sediment have been collected from three British lakes. Magnetic measurements were made on both the whole cores and on sub - samples from them. The natural remanent magnetization is stable, and records well defined declination and inclination swings of 40 -50° and 15 -20 o peak -peak amplitudes respectively. There is also much between swing detail. Both the major swings and many finer details are readily correlated from core to core and lake to lake. Thirty radiocarbon age determinations, pollen analyses and correlations with observatory and archaeomagnetic records have been combined to derive a detailed time scale. This time scale has been transferred to all the ' cores by means of magnetic susceptibility and lithological correl- ations. Fourier analyses of declination and inclination, separately and combined as a complex pair, show that the variations are not simply periodic, nor is their spectrum constant with time. The geomagnetic vector has been looping in a clockwise sense for most of the past 10000 years. The records have been compared with other lacustrine and archaeomagnetic results from other countries, and various models for the non dipole field are discussed in the light of all these records.Attempts to retrieve palaeointensities from the sediments have shown that ARM may provide an effective normalization parameter in some, but by no means all cases. Determining the suitability of sediments for palaeointensity, studies is complicated.Field tests were carried out to investigate the magnetic minerals in the soils of the drainage basin of one lake; soil and lake sediment samples were further analysed in the laboratory. In addition to magnetite an impure form of maghaemite appears to play some part in carrying the NRM of this lake sediment.Continental shelf sediment cores have also been collected from the Firth of Clyde. These have been correlated with each other by their susceptibility logs, and dated by correlation of their secular variation records with the lake sediment record

    Evaluating emplacement temperature of a 1000-year sequence of mass flows using paleomagnetism of their deposits at Mt. Taranaki, New Zealand

    Get PDF
    Temperature can be an important characteristic used to distinguish primary pyroclastic density currents or block-and-ash flows from other collapses not primarily related to an eruption, and also governs the type and level of hazard presented by these mass flows. We examined several mass-flow deposits within the AD1000-1800 Maero Formation at Mt. Taranaki, New Zealand, for field characteristics of hot emplacement - such as the presence of charcoal, baking of soils, or gas-elutriation piping - and conducted a paleomagnetic study of their thermoremanent magnetization (TRM) to determine emplacement temperatures. Results show that the majority of the deposits result from block-and-ash flows emplaced over ~500°C. Some of these deposits were indistinguishable in the field from a re-worked or low-temperature emplaced lahar or landslide deposit, indicating that sedimentary features are not a clear determinant of high emplacement temperature. The high emplacement temperatures suggest that the time between dome emplacement and collapse during this period was usually brief (<30 years), with some events consisting of rapid and repeated growth and collapse of lava domes, possibly within the same prolonged lava effusion episode

    Two Rare Magnetic Cataclysmic Variables with Extreme Cyclotron Features Identified in the Sloan Digital Sky Survey

    Get PDF
    Two newly identified magnetic cataclysmic variables discovered in the Sloan Digital Sky Survey (SDSS), SDSSJ155331.12+551614.5 and SDSSJ132411.57+032050.5, have spectra showing highly prominent, narrow, strongly polarized cyclotron humps with amplitudes that vary on orbital periods of 4.39 and 2.6 hrs, respectively. In the former, the spacing of the humps indicates the 3rd and 4th harmonics in a magnetic field of ~60 MG. The narrowness of the cyclotron features and the lack of strong emission lines imply very low temperature plasmas and very low accretion rates, so that the accreting area is heated by particle collisions rather than accretion shocks. The detection of rare systems like these exemplifies the ability of the SDSS to find the lowest accretion rate close binaries.Comment: Accepted for publication in the Astrophysical Journal, vol. 583, February 1, 2003; slight revisions and additions in response to referee's comments; 17 pages, 6 figures, AASTeX v4.

    Polarimetric Imaging of Large Cavity Structures in the Pre-transitional Protoplanetary Disk around PDS 70: Observations of the disk

    Full text link
    We present high resolution H-band polarized intensity (PI; FWHM = 0."1: 14 AU) and L'-band imaging data (FWHM = 0."11: 15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0."2) up to 210 AU (1."5). In both images, a giant inner gap is clearly resolved for the first time, and the radius of the gap is ~70 AU. Our data show that the geometric center of the disk shifts by ~6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of SED fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L'-band imaging data, we put an upper limit mass of companions at ~30 to ~50MJ within the gap. Taking account of the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap.Comment: accepted by APJ

    Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice - including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA

    Constraining the Movement of the Spiral Features and the Locations of Planetary Bodies within the AB Aur System

    Full text link
    We present new analysis of multi-epoch, H-band, scattered light images of the AB Aur system. We used a Monte Carlo, radiative transfer code to simultaneously model the system's SED and H-band polarized intensity imagery. We find that a disk-dominated model, as opposed to one that is envelope dominated, can plausibly reproduce AB Aur's SED and near-IR imagery. This is consistent with previous modeling attempts presented in the literature and supports the idea that at least a subset of AB Aur's spirals originate within the disk. In light of this, we also analyzed the movement of spiral structures in multi-epoch H-band total light and polarized intensity imagery of the disk. We detect no significant rotation or change in spatial location of the spiral structures in these data, which span a 5.8 year baseline. If such structures are caused by disk-planet interactions, the lack of observed rotation constrains the location of the orbit of planetary perturbers to be >47 AU.Comment: 8 pages, 3 figures, 1 table, Accepted to Ap
    corecore