4,268 research outputs found

    Field-induced Tomonaga-Luttinger liquid phase of a two-leg spin-1/2 ladder with strong leg interactions

    Full text link
    We study the magnetic-field-induced quantum phase transition from a gapped quantum phase that has no magnetic long-range order into a gapless phase in the spin-1/2 ladder compound bis(2,3-dimethylpyridinium) tetrabromocuprate (DIMPY). At temperatures below about 1 K, the specific heat in the gapless phase attains an asymptotic linear temperature dependence, characteristic of a Tomonaga-Luttinger liquid. Inelastic neutron scattering and the specific heat measurements in both phases are in good agreement with theoretical calculations, demonstrating that DIMPY is the first model material for an S=1/2 two-leg spin ladder in the strong-leg regime.Comment: 4.1 pages, 4 figures (Fig. 4 updated), to appear in Physical Review Letter

    A Model of Tuberculosis Screening for Pregnant Women in Resource-Limited Settings Using Xpert MTB/RIF

    Get PDF
    Timely diagnosis and treatment of maternal tuberculosis (TB) is important to reduce morbidity and mortality for both the mother and child, particularly in women who are coinfected with HIV. The World Health Organization (WHO) recommends the integration of TB/HIV screening into antenatal services but available diagnostic tools are slow and insensitive, resulting in delays in treatment initiation. Recently the WHO endorsed Xpert MTB/RIF, a highly sensitive, real-time PCR assay for Mycobacterium tuberculosis that simultaneously detects rifampicin resistance directly from sputum and provides results within 100 minutes. We propose a model for same-day TB screening and diagnosis of all pregnant women at antenatal care using Xpert MTB/RIF. Pilot studies are urgently required to evaluate strategies for the integration of TB screening into antenatal clinics using new diagnostic technologies

    A model of tuberculosis screening for pregnant women in resource-limited settings using Xpert MTB/RIF

    Get PDF
    Timely diagnosis and treatment of maternal tuberculosis (TB) is important to reduce morbidity and mortality for both the mother and child, particularly in women who are coinfected with HIV. TheWorld Health Organization (WHO) recommends the integration of TB/HIV screening into antenatal services but available diagnostic tools are slow and insensitive, resulting in delays in treatment initiation. Recently the WHO endorsed Xpert MTB/RIF, a highly sensitive, real-time PCR assay for Mycobacterium tuberculosis that simultaneously detects rifampicin resistance directly from sputum and provides results within 100 minutes. We propose a model for same-day TB screening and diagnosis of all pregnant women at antenatal care using Xpert MTB/RIF. Pilot studies are urgently required to evaluate strategies for the integration of TB screening into antenatal clinics using new diagnostic technologies

    A Model of Tuberculosis Screening for Pregnant Women in Resource-Limited Settings Using Xpert MTB/RIF

    Get PDF
    Timely diagnosis and treatment of maternal tuberculosis (TB) is important to reduce morbidity and mortality for both the mother and child, particularly in women who are coinfected with HIV. The World Health Organization (WHO) recommends the integration of TB/HIV screening into antenatal services but available diagnostic tools are slow and insensitive, resulting in delays in treatment initiation. Recently the WHO endorsed Xpert MTB/RIF, a highly sensitive, real-time PCR assay for Mycobacterium tuberculosis that simultaneously detects rifampicin resistance directly from sputum and provides results within 100 minutes. We propose a model for same-day TB screening and diagnosis of all pregnant women at antenatal care using Xpert MTB/RIF. Pilot studies are urgently required to evaluate strategies for the integration of TB screening into antenatal clinics using new diagnostic technologies

    Chirped pulse Raman amplification in warm plasma: towards controlling saturation

    Get PDF
    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10's - 100's fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies.close0

    Neutron scattering from a coordination polymer quantum paramagnet

    Get PDF
    Inelastic neutron scattering measurements are reported for a powder sample of the spin-1/2 quantum paramagnet Cu(Quinoxaline)Br2\rm Cu(Quinoxaline)Br_2. Magnetic neutron scattering is identified above an energy gap of 1.9 meV. Analysis of the sharp spectral maximum at the onset indicates that the material is magnetically quasi-one-dimensional. Consideration of the wave vector dependence of the scattering and polymeric structure further identifies the material as a two-legged spin-1/2 ladder. Detailed comparison of the data to various models of magnetism in this material based on the single mode approximation and the continuous unitary transformation are presented. The latter theory provides an excellent account of the data with leg exchange J=2.0J_{\parallel}=2.0 meV and rung exchange J=3.3J_{\perp}=3.3 meV.Comment: 10 pages, 11 figures, 1 tabl

    Numerical Study of a Mixed Ising Ferrimagnetic System

    Full text link
    We present a study of a classical ferrimagnetic model on a square lattice in which the two interpenetrating square sublattices have spins one-half and one. This model is relevant for understanding bimetallic molecular ferrimagnets that are currently being synthesized by several experimental groups. We perform exact ground-state calculations for the model and employ Monte Carlo and numerical transfer-matrix techniques to obtain the finite-temperature phase diagram for both the transition and compensation temperatures. When only nearest-neighbor interactions are included, our nonperturbative results indicate no compensation point or tricritical point at finite temperature, which contradicts earlier results obtained with mean-field analysis.Comment: Figures can be obtained by request to [email protected] or [email protected]

    Searching for Earth analogues around the nearest stars: the disk age-metallicity relation and the age distribution in the Solar Neighbourhood

    Full text link
    The chemical composition of Earth's atmosphere has undergone substantial evolution over the course of its history. It is possible, even likely, that terrestrial planets in other planetary systems have undergone similar changes; consequently, the age distribution of nearby stars is an important consideration in designing surveys for Earth-analogues. Valenti & Fischer (2005) provide age and metallicity estimates for 1039 FGK dwarfs in the Solar Neighbourhood. Using the Hipparcos catalogue as a reference to calibrate potential biases, we have extracted volume-limited samples of nearby stars from the Valenti-Fischer dataset. Unlike other recent investigations, our analysis shows clear evidence for an age-metallicity relation in the local disk, albeit with substantial dispersion at any epoch. The mean metallicity increases from -0.3 dex at a lookback time of ~10 Gyrs to +0.15 dex at the present day. Supplementing the Valenti-Fischer measurements with literature data to give a complete volume-limited sample, the age distribution of nearby FGK dwarfs is broadly consistent with a uniform star-formation rate over the history of the Galactic disk. In striking contrast, most stars known to have planetary companions are younger than 5 Gyrs; however, stars with planetary companions within 0.4 AU have a significantly flatter age distribution, indicating that those systems are stable on timescales of many Gyrs. Several of the older, lower metallicity host stars have enhanced [alpha/Fe] ratios, implying membership of the thick disk. If the frequency of terrestrial planets is also correlated with stellar metallicity, then the median age of such planetary system is likely to be ~3 Gyrs. We discuss the implications of this hypothesis in designing searches for Earth analogues among the nearby stars.Comment: Accepted for publication in Ap

    Direct calculation of the hard-sphere crystal/melt interfacial free energy

    Get PDF
    We present a direct calculation by molecular-dynamics computer simulation of the crystal/melt interfacial free energy, γ\gamma, for a system of hard spheres of diameter σ\sigma. The calculation is performed by thermodynamic integration along a reversible path defined by cleaving, using specially constructed movable hard-sphere walls, separate bulk crystal and fluid systems, which are then merged to form an interface. We find the interfacial free energy to be slightly anisotropic with γ\gamma = 0.62±0.01\pm 0.01, 0.64±0.01\pm 0.01 and 0.58±0.01kBT/σ2\pm 0.01 k_BT/\sigma^2 for the (100), (110) and (111) fcc crystal/fluid interfaces, respectively. These values are consistent with earlier density functional calculations and recent experiments measuring the crystal nucleation rates from colloidal fluids of polystyrene spheres that have been interpreted [Marr and Gast, Langmuir {\bf 10}, 1348 (1994)] to give an estimate of γ\gamma for the hard-sphere system of 0.55±0.02kBT/σ20.55 \pm 0.02 k_BT/\sigma^2, slightly lower than the directly determined value reported here.Comment: 4 pages, 4 figures, submitted to Physical Review Letter
    corecore