3 research outputs found

    A high-throughput label-free cell-based biosensor (CBB) system

    No full text
    Cell-based biosensors (CBBs) have important applications in biosecurity and rapid diagnostics. Current CBB technologies have challenges including cell immobilization on the sensors, high throughput fabrication and portability, and rapid detection of responses to environmental changes. We address these challenges by developing an integrated CBB platform that merges cell printing technology, a lensless charge-coupled device (CCD) imaging system, and custom-developed cell image processing software. Cell printing was used to immobilize cells within hydrogel droplets and pattern these droplets on a microfluidic chip. The CCD was used to detect the morphological response of the immobilized cells to external stimuli (e.g., environmental temperature change) using lensless shadow images. The morphological information can be also detected by sensing a small disturbance in cell alignment, i.e., minor alignment changes of smooth muscles cells on the biosensors. The automatic cell alignment quantification software was used to process the cell images (microscopic image was used as an example) and calculate the cell orientation in seconds. The same images were also manually processed as a control to validate and characterize the integrated platform functionality. The results showed software can measure the cell morphology (i.e., orientation) in an automated way without the need for labeling (e.g., florescent staining). Such an integrated CBB system will allow fabrication of CBBs at high throughput as well as rapidly monitor and measure morphological cellular responses

    Automated and Adaptable Quantification of Cellular Alignment from Microscopic Images for Tissue Engineering Applications

    No full text
    Cellular alignment plays a critical role in functional, physical, and biological characteristics of many tissue types, such as muscle, tendon, nerve, and cornea. Current efforts toward regeneration of these tissues include replicating the cellular microenvironment by developing biomaterials that facilitate cellular alignment. To assess the functional effectiveness of the engineered microenvironments, one essential criterion is quantification of cellular alignment. Therefore, there is a need for rapid, accurate, and adaptable methodologies to quantify cellular alignment for tissue engineering applications. To address this need, we developed an automated method, binarization-based extraction of alignment score (BEAS), to determine cell orientation distribution in a wide variety of microscopic images. This method combines a sequenced application of median and band-pass filters, locally adaptive thresholding approaches and image processing techniques. Cellular alignment score is obtained by applying a robust scoring algorithm to the orientation distribution. We validated the BEAS method by comparing the results with the existing approaches reported in literature (i.e., manual, radial fast Fourier transform-radial sum, and gradient based approaches). Validation results indicated that the BEAS method resulted in statistically comparable alignment scores with the manual method (coefficient of determination R2=0.92 [R superscript 2 = 0.92]). Therefore, the BEAS method introduced in this study could enable accurate, convenient, and adaptable evaluation of engineered tissue constructs and biomaterials in terms of cellular alignment and organization.National Institutes of Health (U.S.) (NIH R21 (AI087107))National Institutes of Health (U.S.) (NIH R01 (AI081534))Wallace H. Coulter FoundationCenter for Integration of Medicine and Innovative TechnologyUnited States. Army Medical Research and Materiel CommandUnited States. Army. Telemedicine & Advanced Technology Research Cente
    corecore