17 research outputs found

    Fuzzy associative memory for humanoid robot joint control

    Get PDF
    Traditional approaches to joint control required accurate modelling of the system dynamic of the plant in question. Fuzzy Associative Memory (FAM) control schemes allow adequate control without a model of the system to be controlled. This paper presents a FAM based joint controller implemented on a humanoid robot. An empirically tuned PI velocity control loop is augmented with this feed forward FAM, with considerable reduction in joint position error achieved online and with minimal additional computational overhead

    Double diamond phase in pear-shaped nanoparticle systems with hard sphere solvent

    Get PDF
    The mechanisms behind the formation of bicontinuous nanogeometries, in particular in vivo, remain intriguing. Of particular interest are the many systems where more than one type or symmetry occurs, such as the Schwarz’ diamond surface and Schoen’s gyroid surface; a current example are the butterfly nanostructures often based on the gyroid, and the beetle nanostructures often based on the diamond surface. Here, we present a computational study of self-assembly of the bicontinuous Pn3m diamond phase in an equilibrium ensemble of pear-shaped particles when a small amount of a hard-sphere ‘solvent’ is added. Our results are based on previous work that showed the emergence of the gyroid Ia3d phase in a pure system of pear-shaped particles (Schönhöfer et al 2017 Interface Focus 7 20160161), in which the pear-shaped particles form an interdigitating bilayer reminiscent of a warped smectic structure. We here show that the addition of a small amount of hard spherical particles tends to drive the system towards the bicontinuous Pn3m double diamond phase, based on Schwarz diamond minimal surface. This result is consistent with the higher degree of spatial heterogeneity of the diamond minimal surface as compared to the gyroid minimal surface, with the hard-sphere ‘solvent’ acting as an agent to relieve packing frustration. However, the mechanism by which this relief is achieved is contrary to the corresponding mechanism in copolymeric systems; the spherical solvent tends to aggregate within the matrix phase, near the minimal surface, rather than within the labyrinthine channels. While it may relate to the specific form of the potential used to approximate the particle shape, this mechanism hints at an alternative way for particle systems to both release packing frustration and satisfy geometrical restrictions in double diamond configurations. Interestingly, the lattice parameters of the gyroid and the diamond phase appear to be commensurate with those of the isometric Bonnet transform

    Correlation Of Terrestrial gamma flashes, Electric fields, and Lightning strikes (COTEL) in thunderstorms using networked balloon payloads developed by university and community college students

    Get PDF
    High energy gamma ray flashes from terrestrial sources have been observed by satellites for decades, but the actual mechanism, assumed to be thunderstorm lightning, has yet to be fully characterized. The goal of COTEL, funded by NASA through the University Student Instrument Project (USIP) program, is to correlate in time TGF events, lightning strikes, and electric fields inside of thunderstorms. This will be accomplished using a small network of balloon-borne payloads suspended in and around thunderstorm environments. The payloads will detect and timestamp gamma radiation bursts, lightning strikes, and the intensity of localized electric fields. While in flight, data collected by the payloads will be transmitted to a ground station in real-time and will be analyzed post-flight to investigate potential correlations between lightning, TGFs, and electric fields. The ground station system that will be used for COTEL was developed for the Eclipse 2017 ballooning project, and was used during flight operations on the day of the eclipse. The COTEL student team is in its second year of effort having spent the first year developing the basic balloon payloads and ground tracking system. Currently the team is focusing on prototype electric field and gamma radiation detectors. Testing and development of these systems will continue into 2018, and flight operations will take place during the spring 2018 Louisiana thunderstorm season. The poster will cover the student team effort in developing said system, an overview of the system architecture, balloon flight tests conducted to date, preliminary results from prototype detectors, and future plans

    This is PR: The realities of public relations

    No full text
    xii+413hlm.;25c

    A Hand-Held AR Magic Lens with User-Perspective Rendering

    No full text
    In this paper we present a user study evaluating the benefits of geometrically correct user-perspective rendering using an Augmented Reality (AR) magic lens. In simulation we compared a user-perspective magic lens against the common device-perspective magic lens on both phone-sized and tablet-sized displays. Our results indicate that a tablet-sized display allows for significantly faster performance of a selection task and that a user-perspective lens has benefits over a device-perspective lens for a selection task. Based on these promising results, we created a proof-of-concept prototype, engineered with current off-the-shelf devices and software. To our knowledge, this is the first geometrically correct userperspective magic lens

    Correlation Of Terrestrial gamma flashes, Electric fields, and Lightning strikes (COTEL) in thunderstorms using networked balloon payloads developed by university and community college students

    Get PDF
    High energy gamma ray flashes from terrestrial sources have been observed by satellites for decades, but the actual mechanism, assumed to be thunderstorm lightning, has yet to be fully characterized. The goal of COTEL, funded by NASA through the University Student Instrument Project (USIP) program, is to correlate in time TGF events, lightning strikes, and electric fields inside of thunderstorms. This will be accomplished using a small network of balloon-borne payloads suspended in and around thunderstorm environments. The payloads will detect and timestamp gamma radiation bursts, lightning strikes, and the intensity of localized electric fields. While in flight, data collected by the payloads will be transmitted to a ground station in real-time and will be analyzed post-flight to investigate potential correlations between lightning, TGFs, and electric fields. The ground station system that will be used for COTEL was developed for the Eclipse 2017 ballooning project, and was used during flight operations on the day of the eclipse. The COTEL student team is in its second year of effort having spent the first year developing the basic balloon payloads and ground tracking system. Currently the team is focusing on prototype electric field and gamma radiation detectors. Testing and development of these systems will continue into 2018, and flight operations will take place during the spring 2018 Louisiana thunderstorm season. The poster will cover the student team effort in developing said system, an overview of the system architecture, balloon flight tests conducted to date, preliminary results from prototype detectors, and future plans
    corecore