61 research outputs found
Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions
In the last decade, many papers highlighted that the histone variant H2AX and its phosphorylation on Ser 139 (γH2AX) cannot be simply considered a specific DNA double-strand-break (DSB) marker with a role restricted to the DNA damage response, but rather as a ‘protagonist’ in different scenarios. This review will present and discuss an up-to-date view regarding the ‘non-canonical’ H2AX roles, focusing in particular on possible functional and structural parts in contexts different from the canonical DNA DSB response. We will present aspects concerning sex chromosome inactivation in male germ cells, X inactivation in female somatic cells and mitosis, but will also focus on the more recent studies regarding embryonic and neural stem cell development, asymmetric sister chromosome segregation in stem cells and cellular senescence maintenance. We will discuss whether in these new contexts there might be a relation with the canonical DNA DSB signalling function that could justify γH2AX formation. The authors will emphasize that, just as H2AX phosphorylation signals chromatin alteration and serves the canonical function of recruiting DSB repair factors, so the modification of H2AX in contexts other than the DNA damage response may contribute towards creating a specific chromatin structure frame allowing ‘non-canonical’ functions to be carried out in different cell types
Induced Pluripotent Stem Cells: Advances in the Quest for Genetic Stability during Reprogramming Process.
Evaluation of the extent and nature of induced pluripotent stem cell (iPSC) genetic instability is important for both basic research and future clinical use. As previously demonstrated regarding embryonic stem cells, such DNA aberrations might affect the differentiation capacity of the cells and increase their tumorigenicity. Here, we first focus on the contribution of multiple DNA damage response pathways during cellular reprogramming. We then discuss the origin and mechanisms responsible for the modification of genetic material in iPSCs (pre-existing variations in somatic cells, mutations induced by reprogramming factors, and mutations induced by culture expansion) and deepen the possible functional consequences of genetic variations in these cells. Lastly, we present some recent improvements of iPSC generation methods aimed at obtaining cells with fewer genetic variations
Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy
Regenerative medicine is extensively interested in developing cell therapies using mesenchymal stem cells (MSCs), with applications to several aging-associated diseases. For successful therapies, a substantial number of cells are needed, requiring extensive ex vivo cell expansion. However, MSC proliferation is limited and it is quite likely that long-term culture evokes continuous changes in MSCs. Therefore, a substantial proportion of cells may undergo senescence. In the present review, we will first present the phenotypic characterization of senescent human MSCs (hMSCs) and their possible consequent functional alterations. The accumulation of oxidative stress and dysregulation of key differentiation regulatory factors determine decreased differentiation potential of senescent hMSCs. Senescent hMSCs also show a marked impairment in their migratory and homing ability. Finally, many factors present in the secretome of senescent hMSCs are able to exacerbate the inflammatory response at a systemic level, decreasing the immune modulation activity of hMSCs and promoting either proliferation or migration of cancer cells. Considering the deleterious effects that these changes could evoke, it would appear of primary importance to monitor the occurrence of senescent phenotype in clinically expanded hMSCs and to evaluate possible ways to prevent in vitro MSC senescence. An updated critical presentation of the possible strategies for in vitro senescence monitoring and prevention constitutes the second part of this review. Understanding the mechanisms that drive toward hMSC growth arrest and evaluating how to counteract these for preserving a functional stem cell pool is of fundamental importance for the development of efficient cell-based therapeutic approaches
Stem cell tracking with nanoparticles for regenerative medicine purposes: An overview
Accurate and noninvasive stem cell tracking is one of the most important needs in regenerative medicine to determine both stem cell destinations and final differentiation fates, thus allowing a more detailed picture of the mechanisms involved in these therapies.
Given the great importance and advances in the field of nanotechnology for stem cell imaging, currently, several nanoparticles have become standardized products and have been undergoing fast commercialization. This review has been intended to summarize the current use of different engineered nanoparticles in stem cell tracking for regenerative medicine purposes, in particular by detailing their main features and exploring their biosafety aspects, the first step for clinical application. Moreover, this review has summarized the advantages and applications of stem cell tracking with nanoparticles in experimental and preclinical studies and investigated present limitations for their employment in the clinical setting
Immunotherapy for Cervical Cancer: Are We Ready for Prime Time?
The prognosis of invasive cervical cancer (CC) remains poor, with a treatment approach that has remained the same for several decades. Lately, a better understanding of the interactions between the disease and the host immune system has allowed researchers to focus on the employment of immune therapy in various clinical settings. The most advanced strategy is immune checkpoint inhibitors (ICIs) with numerous phase II and III trials recently concluded with very encouraging results, assessing single agent therapy, combinations with chemotherapy and radiotherapy. Apart from ICIs, several other compounds have gained the spotlight. Tumor Infiltrating Lymphocytes (TILs) due to their highly selective tumoricidal effect and manageable adverse effect profile have received the FDA’s Breakthrough Therapy designation in 2019. The antibody drug conjugate (ADC) Tisotumab-Vedotin has shown activity in metastatic CC relapsed after at least one line of chemotherapy, with a phase III trial currently actively enrolling patients. Moreover, the deeper understanding of the ever-changing immune landscape of CC carcinogenesis has resulted in the development of active therapeutic vaccines. This review highlights the different immunotherapeutic strategies being explored reflects on what role immunotherapy might have in therapeutic algorithms of CC and addresses the role of predictive biomarkers
Persistent DNA damage-induced premature senescence alters the functional features of human bone marrow mesenchymal stem cells
Human mesenchymal stem cells (hMSCs) are adult multipotent stem cells located in various tissues, including the bone marrow. In contrast to terminally differentiated somatic cells, adult stem cells must persist and function throughout life to ensure tissue homeostasis and repair. For this reason, they must be equipped with DNA damage responses able to maintain genomic integrity while ensuring their lifelong persistence. Evaluation of hMSC response to genotoxic insults is of great interest considering both their therapeutic potential and their physiological functions. This study aimed to investigate the response of human bone marrow MSCs to the genotoxic agent Actinomycin D (ActD), a well-known anti-tumour drug. We report that hMSCs react by undergoing premature senescence driven by a persistent DNA damage response activation, as hallmarked by inhibition of DNA synthesis, p21 and p16 protein expression, marked Senescent Associated β-galactosidase activity and enlarged γH2AX foci co-localizing with 53BP1 protein. Senescent hMSCs overexpress several senescence-associated secretory phenotype (SASP) genes and promote motility of lung tumour and osteosarcoma cell lines in vitro. Our findings disclose a multifaceted consequence of ActD treatment on hMSCs that on the one hand helps to preserve this stem cell pool and prevents damaged cells from undergoing neoplastic transformation, and on the other hand alters their functional effects on the surrounding tissue microenvironment in a way that might worsen their tumour-promoting behaviour
Human mesenchymal stem cells labelled with dye-loaded amorphous silica nanoparticles: long-term biosafety, stemness preservation and traceability in the beating heart
Treatment of myocardial infarction with mesenchymal stem cells (MSCs) has proven beneficial effects in both animal and clinical studies. Engineered silica nanoparticles (SiO2-NPs) have been extensively used as contrast agents in regenerative medicine, due to their resistance to degradation and ease of functionalization. However, there are still controversies on their effective biosafety on cellular systems. In this perspective, the aims of the present study are: 1) to deeply investigate the impact of amorphous 50 nm SiO2-NPs on viability and function of human bone marrow-derived MSCs (hMSCs); 2) to optimize a protocol of harmless hMSCs labelling and test its feasibility in a beating heart model. Optimal cell labelling is obtained after 16 h exposure of hMSCs to fluorescent 50 nm SiO2-NPs (50 µg mL(-1)); interestingly, lysosomal activation consequent to NPs storage is not associated to oxidative stress. During prolonged culture hMSCs do not undergo cyto- or genotoxicity, preserve their proliferative potential and their stemness/differentiation properties. Finally, the bright fluorescence emitted by internalized SiO2-NPs allows both clear visualization of hMSCs in normal and infarcted rat hearts and ultrastructural analysis of cell engraftment inside myocardial tissue. Overall, 50 nm SiO2-NPs display elevated compatibility with hMSCs in terms of lack of cyto- and genotoxicity and maintenance of important features of these cells. The demonstrated biosafety, combined with proper cell labelling and visualization in histological sections, make these SiO2-NPs optimal candidates for the purpose of stem cell tracking inside heart tissue
Cytoreductive Surgery for Heavily Pre-Treated, Platinum-Resistant Epithelial Ovarian Carcinoma: A Two-Center Retrospective Experience
Few retrospective studies have shown a benefit in selected patients affected by heavily pre-treated, platinum-resistant ovarian carcinomas (PROCs) who have undergone cytoreduction at relapse. However, the role of tertiary and quaternary cytoreductive surgery is not fully defined. Our aim was to evaluate survival and surgical morbidity and mortality after maximal cytoreduction in this setting. We evaluated all consecutive patients undergoing cytoreduction for platinum-resistance over an 8-year period (2010–2018) in two different centers. Fifty patients (median age 52.5 years, range 34–75) were included; the median number of previous chemotherapy lines was three (range 1–7) and the median number of previous surgeries was one (range 1–4). Completeness of cytoreduction (CC = 0) was achieved in 22 patients (44%). Rates of major operative morbidity and 30-day mortality were 38% and 8%, respectively. Median follow-up was 35 months. The absence of tumor residual (CC = 0) was associated with a significantly better overall survival (OS) compared to the CC > 0 subgroup (median OS 32.9 months (95% CI 21.6–44.2) vs. 4.8 months (95% CI n.a.–9.8), hazard ratio (HR) 4.21 (95% CI 2.07–8.60), p < 0.001). Optimal cytoreduction is feasible and associated with promising OS in selected, heavily pre-treated PROCs. Further prospective studies are required to better define the role of surgery in platinum-resistant disease
- …