1,341 research outputs found

    Fluidic low speed wind sensor research study Final report, Oct. 1968 - Oct. 1969

    Get PDF
    Cross flow and parallel flow concepts of fluidic wind speed sensor

    Very low velocity flow sensor uses fluidic techniques

    Get PDF
    Parallel-flow wind sensor provides differential pressure output which is nearly linear and relatively insensitive to supply pressure over a wide range of wind velocities. Cross-flow wind sensor outputs are input to a fluidic amplifier to obtain high pressure output for low wind velocities without changing output characteristics

    Classical solutions of sigma models in curved backgrounds by the Poisson-Lie T-plurality

    Get PDF
    Classical equations of motion for three-dimensional sigma-models in curved background are solved by a transformation that follows from the Poisson-Lie T-plurality and transform them into the equations in the flat background. Transformations of coordinates that make the metric constant are found and used for solving the flat model. The Poisson-Lie transformation is explicitly performed by solving the PDE's for auxiliary functions and finding the relevant transformation of coordinates in the Drinfel'd double. String conditions for the solutions are preserved by the Poisson-Lie transformations. Therefore we are able to specify the type of sigma-model solutions that solve also equations of motion of three dimensional relativistic strings in the curved backgrounds. Simple examples are given

    Flat coordinates and dilaton fields for three--dimensional conformal sigma models

    Full text link
    Riemannian coordinates for flat metrics corresponding to three--dimensional conformal Poisson--Lie T--dualizable sigma models are found by solving partial differential equations that follow from the transformations of the connection components. They are then used for finding general forms of the dilaton fields satisfying the vanishing beta equations of the sigma models.Comment: 16 pages, no figure

    Quasiparticle decay rate of Josephson charge qubit oscillations

    Full text link
    We analyze the decay of Rabi oscillations in a charge qubit consisting of a Cooper pair box connected to a finite-size superconductor by a Josephson junction. We concentrate on the contribution of quasiparticles in the superconductors to the decay rate. Passing of a quasiparticle through the Josephson junction tunes the qubit away from the charge degeneracy, thus spoiling the Rabi oscillations. We find the temperature dependence of the quasiparticle contribution to the decay rate for open and isolated systems. The former case is realized if a normal-state trap is included in the circuit, or if just one vortex resides in the qubit; the decay rate has an activational temperature dependence with the activation energy equal to the superconducting gap Δ\Delta. In a superconducting qubit isolated from the environment, the activation energy equals 2Δ2\Delta if the number of electrons is even, while for an odd number of electrons the decay rate of an excited qubit state remains finite in the limit of zero temperature. We estimate the decay rate for realistic parameters of a qubit.Comment: 8 pages, 3 figures, final version as published in PRB, minor change

    Transport properties of single atoms

    Full text link
    We present a systematic study of the ballistic electron conductance through sp and 3d transition metal atoms attached to copper and palladium crystalline electrodes. We employ the 'ab initio' screened Korringa-Kohn-Rostoker Green's function method to calculate the electronic structure of nanocontacts while the ballistic transmission and conductance eigenchannels were obtained by means of the Kubo approach as formulated by Baranger and Stone. We demonstrate that the conductance of the systems is mainly determined by the electronic properties of the atom bridging the macroscopic leads. We classify the conducting eigenchannels according to the atomic orbitals of the contact atom and the irreducible representations of the symmetry point group of the system that leads to the microscopic understanding of the conductance. We show that if impurity resonances in the density of states of the contact atom appear at the Fermi energy, additional channels of appropriate symmetry could open. On the other hand the transmission of the existing channels could be blocked by impurity scattering.Comment: RevTEX4, 9 pages, 9 figure

    Study of loss in superconducting coplanar waveguide resonators

    Full text link
    Superconducting coplanar waveguide (SCPW) resonators have a wide range of applications due to the combination of their planar geometry and high quality factors relative to normal metals. However, their performance is sensitive to both the details of their geometry and the materials and processes that are used in their fabrication. In this paper, we study the dependence of SCPW resonator performance on materials and geometry as a function of temperature and excitation power. We measure quality factors greater than 2Ă—1062\times10^6 at high excitation power and 6Ă—1056\times10^5 at a power comparable to that generated by a single microwave photon circulating in the resonator. We examine the limits to the high excitation power performance of the resonators and find it to be consistent with a model of radiation loss. We further observe that while in all cases the quality factors are degraded as the temperature and power are reduced due to dielectric loss, the size of this effect is dependent on resonator materials and geometry. Finally, we demonstrate that the dielectric loss can be controlled in principle using a separate excitation near the resonance frequencies of the resonator.Comment: Replacing original version. Changes made based on referee comments. Fixed typo in equation (3) and added appendi

    Spin-dependent Transparency of Ferromagnet/Superconductor Interfaces

    Get PDF
    Because the physical interpretation of the spin-polarization of a ferromagnet determined by point-contact Andreev reflection (PCAR) is non-trivial, we have carried out parameter-free calculations of PCAR spectra based upon a scattering-theory formulation of Andreev reflection generalized to spin-polarized systems and a tight-binding linear muffin tin orbital method for calculating the corresponding scattering matrices. PCAR is found to measure the spin-dependent interface transparency rather than the bulk polarization of the ferromagnet which is strongly overestimated by free electron model fitting.Comment: 4 pages, 1figure. submitte

    Helical edge and surface states in HgTe quantum wells and bulk insulators

    Full text link
    The quantum spin Hall (QSH) effect is the property of a new state of matter which preserves time-reversal, has an energy gap in the bulk, but has topologically robust gapless states at the edge. Recently, it has been shown that HgTe quantum wells realize this novel effect. In this work, we start from realistic tight-binding models and demonstrate the existence of the helical edge states in HgTe quantum wells and calculate their physical properties. We also show that 3d HgTe is a topological insulator under uniaxial strain, and show that the surface states are described by single-component massless relativistic Dirac fermions in 2+1 dimensions. Experimental predictions are made based on the quantitative results obtained from realistic calculations.Comment: 5 page
    • …
    corecore