1,126 research outputs found

    Substrate-induced antiferromagnetism of an Fe monolayer on the Ir(001) surface

    Full text link
    We present detailed ab initio study of structural and magnetic stability of a Fe-monolayer on the fcc(001) surface of iridium. The Fe-monolayer has a strong tendency to order antiferromagnetically for the true relaxed geometry. On the contrary an unrelaxed Fe/Ir(001) sample has a ferromagnetic ground state. The antiferromagnetism is thus stabilized by the decreased Fe-Ir layer spacing in striking contrast to the recently experimentally observed antiferromagnetism of the Fe/W(001) system which exists also for an ideal bulk-truncated, unrelaxed geometry. The calculated layer relaxations for Fe/Ir(001) agree reasonably well with recent experimental LEED data. The present study centers around the evaluation of pair exchange interactions between Fe-atoms in the Fe-overlayer as a function of the Fe/Ir interlayer distance which allows for a detailed understanding of the antiferromagnetism of a Fe/Ir(001) overlayer. Furthermore, our calculations indicate that the nature of the true ground state could be more complex and display a spin spiral-like rather than a c(2x2)-antiferromagnetic order. Finally, the magnetic stability of the Fe monolayer on the Ir(001) surface is compared to the closely related Fe/Rh(001) system.Comment: 8 pages, 4 figure

    Magnetic Phase Control in Monolayer Films by Substrate Tuning

    Get PDF
    We propose to tailor exchange interactions in magnetic monolayer films by tuning the adjacent non-magnetic substrate. As an example, we demonstrate a ferromagnetic-antiferromagnetic phase transition for one monolayer Fe on a Ta(x)W(1-x)(001) surface as a function of the Ta concentration. At the critical Ta concentration, the nearest-neighbor exchange interaction is small and the magnetic phase space is dramatically broadened. Complex magnetic order such as spin-spirals, multiple-Q, or even disordered local moment states can occur, offering the possibility to store information in terms of ferromagnetic dots in an otherwise zero-magnetization state matrix.Comment: after minor changes, 5 pages, 5 figures, revtex

    Magnetism of mixed quaternary Heusler alloys: (Ni,T)2_{2}MnSn (T=Cu,Pd) as a case study

    Full text link
    The electronic properties, exchange interactions, finite-temperature magnetism, and transport properties of random quaternary Heusler Ni2_{2}MnSn alloys doped with Cu- and Pd-atoms are studied theoretically by means of {\it ab initio} calculations over the entire range of dopant concentrations. While the magnetic moments are only weakly dependent on the alloy composition, the Curie temperatures exhibit strongly non-linear behavior with respect to Cu-doping in contrast with an almost linear concentration dependence in the case of Pd-doping. The present parameter-free theory agrees qualitatively and also reasonably well quantitatively with the available experimental results. An analysis of exchange interactions is provided for a deeper understanding of the problem. The dopant atoms perturb electronic structure close to the Fermi energy only weakly and the residual resistivity thus obeys a simple Nordheim rule. The dominating contribution to the temperature-dependent resistivity is due to thermodynamical fluctuations originating from the spin-disorder, which, according to our calculations, can be described successfully via the disordered local moments model. Results based on this model agree fairly well with the measured values of spin-disorder induced resistivity.Comment: 13 pages, 13 figure

    Quantum graph as a quantum spectral filter

    Full text link
    We study the transmission of a quantum particle along a straight input--output line to which a graph Γ\Gamma is attached at a point. In the point of contact we impose a singularity represented by a certain properly chosen scale-invariant coupling with a coupling parameter α\alpha. We show that the probability of transmission along the line as a function of the particle energy tends to the indicator function of the energy spectrum of Γ\Gamma as α→∞\alpha\to\infty. This effect can be used for a spectral analysis of the given graph Γ\Gamma. Its applications include a control of a transmission along the line and spectral filtering. The result is illustrated with an example where Γ\Gamma is a loop exposed to a magnetic field. Two more quantum devices are designed using other special scale-invariant vertex couplings. They can serve as a band-stop filter and as a spectral separator, respectively.Comment: 15 pages, 8 figures. Copyright (2013) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physic
    • …
    corecore