164 research outputs found

    Bacterial stimuli activate nitric oxide colonic mucosal production in diverticular disease. Protective effects ofL. casei DG® (Lactobacillus paracaseiCNCM I-1572)

    Get PDF
    Background: Micro-inflammation and changes in gut microbiota may play a role in the pathogenesis of diverticular disease (DD). Objective: The objective of this article is to evaluate the expression of nitric oxide (NO)-related mediators and S100B in colonic mucosa of patients with DD in an ex vivo model of bacterial infection. Methods: Intestinal biopsies obtained from patients with diverticulosis, symptomatic uncomplicated diverticular disease (SUDD) and SUDD with previous acute diverticulitis (SUDD+AD) were stimulated with the probiotic L. casei DG® (LCDG) and/or the pathogen enteroinvasive Escherichia coli (EIEC). S100B, NO release and iNOS expression were then evaluated. Results: Basal iNOS expression was significantly increased in SUDD and SUDD+AD patients. Basal NO expression was significantly increased in SUDD+AD. No differences in S100B release were found. In all groups, iNOS expression was significantly increased by EIEC and reduced by LCDG. In all groups, except for SUDD+AD, EIEC significantly increased NO release, whereas no increase was observed when LCDG was added to biopsies. EIEC did not induce significant changes in S100B release. Conclusions: Colonic mucosa of patients with DD is characterized by a different reactivity toward pathogenic stimuli. LCDG plays a role in counteracting the pro-inflammatory effects exerted by EIEC, suggesting a beneficial role of this probiotic in DD

    Prostate Cancer and Sleep Disorders: A Systematic Review.

    Get PDF
    Prostate cancer (PCa) treatment involves multiple strategies depending on the disease's stage. Androgen deprivation therapy (ADT) remains the gold standard for advanced and metastatic stages. Sleep quality has been suggested as being additionally influenced also by local radiotherapy, prostatectomy and androgen-receptor (AR)-targeted agents. We performed a systematic review exploring the landscape of studies published between 1 January 1990 and 31 July 2021, investigating sleep disturbances in PCa patients receiving active treatments, including the influence of hormonal therapy on sleep quality as a factor affecting their quality of life. Out of 45 articles identified, 16 studies were selected, which recruited patients with PCa, undergoing active treatment in either a prospective longitudinal or cross-sectional study. Development of sleep disorders or changes in sleep quality were reported in 14 out of 16 trials included. Only five trials included objective measurements such as actigraphy, mostly at one time point and without a baseline assessment. Limitations to be addressed are the small number of existing trials, lack of randomized trials and heterogeneity of methodologies used. This systematic review outlines the lack of prospective trials investigating sleep disorders, with a rigorous methodology, in homogeneous cohorts of PCa patients. Future trials are needed to clarify the prevalence and impact of this side effect of PCa treatments

    Molecular Signaling and Dysfunction of the Human Reactive Enteric Glial Cell Phenotype: Implications for GI Infection, IBD, POI, Neurological, Motility, and GI Disorders

    Get PDF
    BACKGROUND: Clinical observations or animal studies implicate enteric glial cells in motility disorders, irritable bowel syndrome, inflammatory bowel disease, gastrointestinal (GI) infections, postoperative ileus, and slow transit constipation. Mechanisms underlying glial responses to inflammation in human GI tract are not understood. Our goal was to identify the "reactive human enteric glial cell (rhEGC) phenotype" induced by inflammation, and probe its functional relevance. METHODS: Human enteric glial cells in culture from 15 GI-surgical specimens were used to study gene expression, Ca, and purinergic signaling by Ca/fluo-4 imaging and mechanosensitivity. A nanostring panel of 107 genes was designed as a read out of inflammation, transcription, purinergic signaling, vesicular transport protein, channel, antioxidant, and other pathways. A 24-hour treatment with lipopolysaccharide (200 μg/mL) and interferon-γ (10 μg/mL) was used to induce inflammation and study molecular signaling, flow-dependent Ca responses from 3 mL/min to 10 mL/min, adenosine triphosphate (ATP) release, and ATP responses. RESULTS: Treatment induced a "rhEGC phenotype" and caused up-regulation in messenger RNA transcripts of 58% of 107 genes analyzed. Regulated genes included inflammatory genes (54%/IP10; IFN-γ; CxCl2; CCL3; CCL2; C3; s100B; IL-1β; IL-2R; TNF-α; IL-4; IL-6; IL-8; IL-10; IL-12A; IL-17A; IL-22; and IL-33), purine-genes (52%/AdoR2A; AdoR2B; P2RY1; P2RY2; P2RY6; P2RX3; P2RX7; AMPD3; ENTPD2; ENTPD3; and NADSYN1), channels (40%/Panx1; CHRNA7; TRPV1; and TRPA1), vesicular transporters (SYT1, SYT2, SNAP25, and SYP), transcription factors (relA/relB, SOCS3, STAT3, GATA_3, and FOXP3), growth factors (IGFBP5 and GMCSF), antioxidant genes (SOD2 and HMOX1), and enzymes (NOS2; TPH2; and CASP3) (P < 0.0001). Treatment disrupted Ca signaling, ATP, and mechanical/flow-dependent Ca responses in human enteric glial cells. ATP release increased 5-fold and s100B decreased 33%. CONCLUSIONS: The "rhEGC phenotype" is identified by a complex cascade of pro-inflammatory pathways leading to alterations of important molecular and functional signaling pathways (Ca, purinergic, and mechanosensory) that could disrupt GI motility. Inflammation induced a "purinergic switch" from ATP to adenosine diphosphate/adenosine/uridine triphosphate signaling. Findings have implications for GI infection, inflammatory bowel disease, postoperative ileus, motility, and GI disorders
    corecore