8 research outputs found
Vortex movement and magnetization of high Tc superconductors
The basic characteristics of the thermoactivated vortex mobility in Y1Ba2Cu3O7 are determined by measurement of the kinetics of magnetization in two time regimes. The analysis of the kinetics of the approach of the equilibrium results in the activation energy, while the measurement of the log-creep rate allows determination of the activated moment. It is shown that the movement of vortices can be regarded as the diffusion process
Levitation of superconducting composites
The inverse levitation of a high temperature superconductor polymer composite consisting of powdered quench melt growth Ba2YCu3O(7-delta) and cyanoacrylate is reported. Magnetic hysteresis loop measurements for the composite are compared to those measured for the bulk material prior to powdering. Differences in the flux pining capability between the two material forms are small but significant
Dynamics of the magnetic flux trapped in fractal clusters of normal phase in a superconductor
The influence of geometry and morphology of superconducting structure on
critical currents and magnetic flux trapping in percolative type-II
superconductor is considered. The superconductor contains the clusters of a
normal phase, which act as pinning centers. It is found that such clusters have
significant fractal properties. The main features of these clusters are studied
in detail: the cluster statistics is analyzed; the fractal dimension of their
boundary is estimated; the distribution of critical currents is obtained, and
its peculiarities are explored. It is examined thoroughly how the finite
resolution capacity of the cluster geometrical size measurement affects the
estimated value of fractal dimension. The effect of fractal properties of the
normal phase clusters on the electric field arising from magnetic flux motion
is investigated in the case of an exponential distribution of cluster areas.
The voltage-current characteristics of superconductors in the resistive state
for an arbitrary fractal dimension are obtained. It is revealed that the
fractality of the boundaries of the normal phase clusters intensifies the
magnetic flux trapping and thereby raises the critical current of a
superconductor.Comment: revtex, 16 pages with 1 table and 5 figures; text and figures are
improved; more detailed version with geometric probability analisys of the
distribution of entry points into weak links over the perimeter of a normal
phase clusters and one additional figure is published in Phys.Rev.B;
alternative e-mail of author is [email protected]