5 research outputs found

    The Problems of Renewable Power Plant Construction Affecting the Energy Security of Thailand

    Get PDF
    The objectives of this research were to study the process of submitting an application for every license that affects the success of renewable power plant construction and the energy security of Thailand in accordance with the Energy Industry Act 2007, the engineering factors used in the selection of all types of renewable power plant construction, and the Key Performance Indicators of all types of renewable power plant construction. The data analysis was divided into two sections. For the first section, the quantitative data was collected from the questionnaire conducted by the purposive sampling that included those related to renewable power plant projects, which asked the questions about the rules and regulations and power purchase agreement under the Energy Industry Act 2007. As for the factors influencing the project success, the private sector, combined in the sample group, included the design engineers, consulting and control engineers, and contractors. The 400 engineers were randomly selected from the registration of the Council of Engineers, including senior professional engineers, professional engineers, associate engineers, and adjunct engineers. In the second section, the qualitative data came from the in-depth interviews with five specialists and experts in the renewable power plant industry and in legal knowledge about the rules and regulations and power purchase agreements according to the Energy Industry Act 2007, who work in the Metropolitan Electricity Authority, a renewable power plant construction company, a renewable energy consulting company, in the field of renewable power plant investment, and as a renewable power plant specialist (Office of the Energy Regulatory Commission). The data was analyzed by using the following statistics: percentage, frequency, mean, standard deviation, and the Enter method of multiple regression. According to the results, the overall success of using the engineering factors in selecting a renewable power plant establishment has the mean at a high level. With regard to the types of power plants, the solar power plant is ranked at the top, followed by the second, the biomass power plant; then, the waste-to-energy power plant, the biogas power plant, and the wind power plant, respectively. The type of power plant with a moderately high mean is the hydroelectric power plant. The findings show the engineering factors related to the success of all types of renewable power plants. Moreover, regarding the problem of energy policy, deciding which type of energy to use is highly complicated because there are many dimensional reasons and no form of energy is the best or the worst option. However, it is not too difficult for specialists to make a decision

    The transformation of waste Bakelite to replace natural fine aggregate in cement mortar

    No full text
    Bakelite material has been used to produce the various components for cars and consumer goods industry in Thailand. The growth of Bakelite consumption increases Bakelite waste. Bakelite waste is prohibited from disposing of direct landfilling and open burning because of the improper disposal and emission reasons. A large amount of this waste needs the large safe space of warehouse area for keeping which becomes a waste management problem. Size reduction by milling machine is helpful for waste handling and storing, however, the post-milling waste Bakelite plastic utilization shall be studied to maintain the waste storing capacity. There are some studies of the milling machine used for waste plastic size reduction. However, the particular study of milling machine application for waste size reduction and its milling waste utilization is still insufficient in Thailand. The purpose of this research is the use of waste Bakelite aggregate milling machine for Bakelite waste size reduction and use of the post-milling waste Bakelite as a fine aggregate to replace natural sand material in cement mortar. The waste Bakelite fine aggregate (WBFA) was mixed in cement mortar mixture with the proportion 0% 20% 40% 60% 80% and 100% by volume for cement mortar sample preparation. The mortar sample was tested for compressive strength follow ASTM standard. The compressive test result of mortar samples will be compared between conventional mortar (0% WBFA) and waste Bakelite mortar (WBM) as well as comparing with the mortar standard. From an analysis of the sample test data found that the WBFA content in cement mortar mixture can predict the strength of WBM. The compressive strength of WBM at 28 days age with the fraction of WBFA is not exceeded 11.03%, and 23.08% respectively can be met the mortar standard according to the equation. The utilization of WBM to develop mortar non-structural mortar product can be usable from a technical point of view

    Study of mechanical properties and recommendations for the application of waste Bakelite aggregate concrete

    No full text
    Bakelite waste from industrial manufacturing may be a hazard to the environment and public health. The utilization of waste Bakelite (WB) to replace natural aggregates (NA), such as natural coarse aggregate (NCA) and natural fine aggregate (NFA), in concrete and mortar is an approach for reducing both waste plastic and natural material. This research examines the utilization of waste Bakelite aggregate (WBA) in concrete and mortar mixtures to form waste Bakelite aggregate concrete (WBAC) and waste Bakelite mortar (WBM). The tests cover the physical and chemical properties of WBA, the mechanical properties of WBAC and WBM (including the extraction of chemical substances from WBA utilization to replace NCA and NFA), and recommendations for the application of replacement. The results indicate that WBA particles of different sizes can replace both fine and coarse natural aggregates. Its weight is less than natural aggregate but the absorption rate is higher. As for recommendations for the application, it was found that replacing 20% of NCA with waste Bakelite coarse aggregate in concrete (WBAC-RNCA) was the most suitable proportion, owing to its mechanical properties and safety for the environment and public health, and because its material cost is acceptable. However, the use of waste Bakelite fine aggregate to replace NFA (WBAC-RNFA) in concrete is not appropriate, because its mechanical properties are not sufficient, and it is considered unsafe for the environment and health. Moreover, WBM is not a suitable material for plastering work, since it may be a hazard to the environment and public health, and its cost is higher than conventional mortar. Keywords: Waste Bakelite, Aggregate, Concrete, Morta

    Mechanical Properties of Parallel TDG Bamboo Laminated Columns with Tough and Grove Joints

    No full text
    The problem of bamboo’s strength depends on the length used. From past experiments, it was found that the physical properties of bamboo have thickness at the bottom and a tapered end, resulting in the strength of the bamboo in each part being different. The bottom part can resist more compression than the tip, which corresponds to the physical characteristics of bamboo. To use bamboo for main construction, such as columns, many select raw bamboo that measures approximately 3 m from the ground and is considered the strongest part. The present bamboo laminated products are limited to 2.4 m in length due to the capabilities of today’s compression machines and the factor of length as mentioned above. The column is an important infrastructure, which must have sufficient strength and capacity to solve the problem of high space. However, based on the above limitations, it is particularly important to study the connectivity of increasing column length. A wood joint is a traditional method to secure two pieces of wood together. Tongue and groove joints are most common in floorings, such as wood flooring, laminate flooring, and flooring. One of the hardest methods of securing wood is end to end of edge to edge. In order to further develop green building materials, TDG bamboo is processed into laminated columns (TDGLC). It is considered important because, in addition to increasing income for farmers, it will also enable the development of building materials to replace wood in the future. Therefore, this research demonstrates the benefits of developing locally available materials such as bamboo. To develop laminated bamboo columns for use in a structure, we chose 3–4-year-old TDG bamboo and glued it to obtain a 100 mm cross-section column in order to maximize the benefits of using TDG bamboo for real use. Test specimens are joined by tongue-groove joints to a column length of 1 m, 2 m, and 3 m by joining joints in four different areas: Top (T), middle (M), top-bottom (TB), and bottom (B), to test for compressive strength. The test results showed that TDGLC + TG at the top specimens 4L01 T–4L03 T can resist a load range of 100–65%, and for the middle specimen 4L01 M–4L03 M, the load is between 88 and 57%. At the top-bottom 4L01 TB–4L03 TB, the load is between 30 and 20%. At the bottom 4L01 B–4L03 B, the load is between 28 and 18%

    Mechanical Properties of Parallel TDG Bamboo Laminated Columns with Tough and Grove Joints

    No full text
    The problem of bamboo’s strength depends on the length used. From past experiments, it was found that the physical properties of bamboo have thickness at the bottom and a tapered end, resulting in the strength of the bamboo in each part being different. The bottom part can resist more compression than the tip, which corresponds to the physical characteristics of bamboo. To use bamboo for main construction, such as columns, many select raw bamboo that measures approximately 3 m from the ground and is considered the strongest part. The present bamboo laminated products are limited to 2.4 m in length due to the capabilities of today’s compression machines and the factor of length as mentioned above. The column is an important infrastructure, which must have sufficient strength and capacity to solve the problem of high space. However, based on the above limitations, it is particularly important to study the connectivity of increasing column length. A wood joint is a traditional method to secure two pieces of wood together. Tongue and groove joints are most common in floorings, such as wood flooring, laminate flooring, and flooring. One of the hardest methods of securing wood is end to end of edge to edge. In order to further develop green building materials, TDG bamboo is processed into laminated columns (TDGLC). It is considered important because, in addition to increasing income for farmers, it will also enable the development of building materials to replace wood in the future. Therefore, this research demonstrates the benefits of developing locally available materials such as bamboo. To develop laminated bamboo columns for use in a structure, we chose 3–4-year-old TDG bamboo and glued it to obtain a 100 mm cross-section column in order to maximize the benefits of using TDG bamboo for real use. Test specimens are joined by tongue-groove joints to a column length of 1 m, 2 m, and 3 m by joining joints in four different areas: Top (T), middle (M), top-bottom (TB), and bottom (B), to test for compressive strength. The test results showed that TDGLC + TG at the top specimens 4L01 T–4L03 T can resist a load range of 100–65%, and for the middle specimen 4L01 M–4L03 M, the load is between 88 and 57%. At the top-bottom 4L01 TB–4L03 TB, the load is between 30 and 20%. At the bottom 4L01 B–4L03 B, the load is between 28 and 18%
    corecore