395 research outputs found

    The Northwest Tropical Atlantic Station (NTAS) : NTAS-1 mooring deployment cruise report

    Get PDF
    A surface mooring outfitted for meteorological and oceanographic measurement was deployed near 14°50'N, 51°00'W in the northwest tropical Atlantic on 30 March 2001. This was the initial deployment of the Northwest Tropical Atlantic Station (NTAS) project for air–sea flux measurement. These observations will be used to investigate air–sea interaction processes related to climate variability. The deployment was done on R/V Oceanus Cruise 365, Leg 5 by the Upper Ocean Processes Group (UOP) of the Woods Hole Oceanographic Institution. The 3-meter discus buoy was outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 120 m of the mooring line was outfitted with oceanographic sensors for the measurement of temperature and velocity. This report describes the initial deployment of the NTAS mooring (NTAS-1), including some of the pre-cruise buoy preparations and post cruise data comparisons.Funding was provided by the National Oceanic and Atmospheric Administration (NOAA) through the Cooperative Institute for Climate and Ocean Research (CICOR) under Grant No. NA87RJ0445

    Stable gravastars with generalised exteriors

    Full text link
    New spherically symmetric gravastar solutions, stable to radial perturbations, are found by utilising the construction of Visser and Wiltshire. The solutions possess an anti--de Sitter or de Sitter interior and a Schwarzschild--(anti)--de Sitter or Reissner--Nordstr\"{o}m exterior. We find a wide range of parameters which allow stable gravastar solutions, and present the different qualitative behaviours of the equation of state for these parameters.Comment: 14 pages, 11 figures, to appear in Classical and Quantum Gravit

    DDFT calibration and investigation of an anisotropic phase-field crystal model

    Full text link
    The anisotropic phase-field crystal model recently proposed and used by Prieler et al. [J. Phys.: Condens. Matter 21, 464110 (2009)] is derived from microscopic density functional theory for anisotropic particles with fixed orientation. Further its morphology diagram is explored. In particular we investigated the influence of anisotropy and undercooling on the process of nucleation and microstructure formation from atomic to the microscale. To that end numerical simulations were performed varying those dimensionless parameters which represent anisotropy and undercooling in our anisotropic phase-field crystal (APFC) model. The results from these numerical simulations are summarized in terms of a morphology diagram of the stable state phase. These stable phases are also investigated with respect to their kinetics and characteristic morphological features.Comment: It contain 13 pages and total of 7 figure

    Gravastars must have anisotropic pressures

    Full text link
    One of the very small number of serious alternatives to the usual concept of an astrophysical black hole is the "gravastar" model developed by Mazur and Mottola; and a related phase-transition model due to Laughlin et al. We consider a generalized class of similar models that exhibit continuous pressure -- without the presence of infinitesimally thin shells. By considering the usual TOV equation for static solutions with negative central pressure, we find that gravastars cannot be perfect fluids -- anisotropic pressures in the "crust" of a gravastar-like object are unavoidable. The anisotropic TOV equation can then be used to bound the pressure anisotropy. The transverse stresses that support a gravastar permit a higher compactness than is given by the Buchdahl--Bondi bound for perfect fluid stars. Finally we comment on the qualitative features of the equation of state that gravastar material must have if it is to do the desired job of preventing horizon formation.Comment: V1: 15 pages; 4 figures; uses iopart.cls; V2: 16 pages; added 3 references and brief discussio

    Gravastar Solutions with Continuous Pressures and Equation of State

    Full text link
    We study the gravitational vacuum star (gravastar) configuration as proposed by other authors in a model where the interior de Sitter spacetime segment is continuously extended to the exterior Schwarzschild spacetime. The multilayered structure in previous papers is replaced by a continuous stress-energy tensor at the price of introducing anisotropy in the (fluid) model of the gravastar. Either with an ansatz for the equation of state connecting the radial prp_r and tangential ptp_t pressure or with a calculated equation of state with non-homogeneous energy/fluid density, solutions are obtained which in all aspects satisfy the conditions expected for an anisotropic gravastar. Certain energy conditions have been shown to be obeyed and a polytropic equation of state has been derived. Stability of the solution with respect to possible axial perturbation is shown to hold.Comment: 19 pages, 9 figures. Latest version contains new and updated references along with some clarifying remarks in the stability analysi

    Nonlinear evolution of dark matter and dark energy in the Chaplygin-gas cosmology

    Full text link
    The hypothesis that dark matter and dark energy are unified through the Chaplygin gas is reexamined. Using generalizations of the spherical model which incorporate effects of the acoustic horizon we show that an initially perturbative Chaplygin gas evolves into a mixed system containing cold dark matter-like gravitational condensate.Comment: 11 pages, 3 figures, substantial revision, title changed, content changed, added references, to appear in JCA

    Off Mass Shell Effects in Hadron Electric Dipole Moments

    Full text link
    We note that off the quark mass shell the operators (pi+pf)μγ5(p_i+p_f)_\mu\gamma_5 and iσμν(pipf)νγ5i\sigma_{\mu\nu}(p_i -p_f)^\nu\gamma_5, both of which reduce to σE-\vec{\sigma}\cdot\vec{E} in the non-relativistic limit, are no longer identical. In this paper we explore the effects of this difference in the contribution of these quark electric moments to hadronic electric moments.Comment: 21 pages, 1 figure, Revtex, uses psfi

    Estimation of ash injection in the atmosphere by basaltic volcanic plumes: the case of the Eyjafjallajökull 2010 eruption

    Get PDF
    During explosive eruptions, volcanic plumes inject ash into the atmosphere and may severely affect air traffic, as illustrated by the 2010 Eyjafjallajökull eruption. Quantitative estimates of ash injection can be deduced from the height reached by the volcanic plume on the basis of scaling laws inferred from models of powerful Plinian plumes. In less explosive basaltic eruptions, there is a partitioning of the magma influx between the atmospheric plume and an effusive lava flow on the ground. We link the height reached by the volcanic plume with the rate of ash injection in the atmosphere via a refined plume model that (1) includes a recently developed variable entrainment law and (2) accounts for mass partitioning between ground flow and plume. We compute the time evolution of the rate of injection of ash into the atmosphere for the Eyjafjallajökull eruption on the basis of satellite thermal images and plume heights and use the dispersion model of the Volcanic Ash Advisory Center of Toulouse to translate these numbers into hazard maps. The classical Plinian model would have overestimated ash injection by about 20% relative to the refined estimate, which does not jeopardize risk assessment. This small error was linked to effective fragmentation by intense interactions of magma with water derived from melting of ice and hence strong mass partitioning into the plume. For a less well fragmented basaltic dry eruption, the error may reach 1 order of magnitude and hence undermine the prediction of ash dispersion, which demonstrates the need to monitor both plume heights and ground flows during an explosive eruption

    The π0e+e\pi^0\to e^+e^- and ημ+μ\eta\to \mu^+ \mu^- Decays Revisited

    Full text link
    The rare π0e+e\pi^0 \to e^+e^- and ημ+μ\eta \to \mu^+\mu^- decays are calculated in different schemes, which are seen to be essentially equivalent to and produce the same results as conventional Vector-Meson Dominance. We obtain the theoretical predictions B(π0e+e)=(6.41±0.19)×108B(\pi^0 \to e^+e^-) = (6.41 \pm 0.19)\times 10^{-8} and B(ημ+μ)=(1.14+0.060.03)×105B(\eta \to \mu^+\mu^-) = (1.14 +0.06 -0.03) \times 10^{-5} in agreement with recent experimental data.Comment: 10 pages, LATEX (revised version for recent experimental data

    Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation

    Get PDF
    Advanced phase-field techniques have been applied to address various aspects of polycrystalline solidification including different modes of crystal nucleation. The height of the nucleation barrier has been determined by solving the appropriate Euler-Lagrange equations. The examples shown include the comparison of various models of homogeneous crystal nucleation with atomistic simulations for the single component hard-sphere fluid. Extending previous work for pure systems (Gránásy L, Pusztai T, Saylor D and Warren J A 2007 Phys. Rev. Lett. 98 art no 035703), heterogeneous nucleation in unary and binary systems is described via introducing boundary conditions that realize the desired contact angle. A quaternion representation of crystallographic orientation of the individual particles (outlined in Pusztai T, Bortel G and Gránásy L 2005 Europhys. Lett. 71 131) has been applied for modeling a broad variety of polycrystalline structures including crystal sheaves, spherulites and those built of crystals with dendritic, cubic, rhombododecahedral, truncated octahedral growth morphologies. Finally, we present illustrative results for dendritic polycrystalline solidification obtained using an atomistic phase-field model
    corecore