8 research outputs found

    Operation of IR-UWB WBAN antennas close to human tissues

    No full text
    Abstract In this dissertation, the operation of planar impulse radio (IR) ultra wideband (UWB) antennas is examined for use in wireless body area networks (WBANs). The objective of the thesis is to consider electromagnetic phenomena due to coupling between an antenna and human body tissues and to analyse the challenges of wideband radiators. The aim is to understand the fundamental behaviour of an antenna in a WBAN, focusing on off-body and on-body communications. The thesis premises follow the international WBAN standard 802.15.6-2012 by the Institute of Electrical and Electronics Engineering (IEEE) and the Federal Communications Commission’s (FCC) UWB regulations (3.1–10.6 GHz). In the examinations, the frequency-dependent modelling of human tissues is considered. The impact of the variation of tissue layer thickness on the performance of an antenna is depicted. The demonstration of the impact of antenna input power is given in terms of generation of heat in tissues and specific absorption rate (SAR). In order to theoretically contemplate the effect of reflections due to tissues on antenna patterns, the opportunities to influence polarization with an artificially anisotropic substrate are derived. With the proposed method, not earlier proposed for WBAN antennas, the smooth patterns without pattern minima can be achieved over the FCC UWB bandwidth. In addition, a theoretical two-path model is applied to the estimation of the antenna pattern shape close to tissues. Various antenna parameters are explored as a function of the use distance to tissue surface to demonstrate the behaviour in the vicinity of a body. The size of the reactive near-field is an important factor for the evaluation of satisfactory on-body performance. The proportions of absorption, mismatch and body losses are analysed close to a body. The connection between the complex input impedance and the dimensions of planar antennas is analysed by using lumped-element equivalent circuits. The impact of the actual width and length of the radiator on the impedance behaviour is presented for the first time. In addition, impedance is analysed in terms of capacitance, inductance and resistance within the reactive near-field for the first time. In order to understand the impact of tissues close to the antenna, the parasitic components for the stages in equivalents are proposed.Tiivistelmä Tässä väitöskirjassa tarkastellaan laajakaistaisten impulssiradioantennien (IR-UWB) toimintaa langattomissa kehoverkoissa (WBAN). Työn tavoitteena on tarkastella antennin ja ihmiskudoksen kytkeytymisestä johtuvia sähkömagneettisia ilmiöitä ja analysoida laajakaistaisen säteilijän haasteet. Päämääränä on ymmärtää antennin suorituskyky kontekstissa ja kohdeympäristöksi on fokusoitu toiminta kehon pinnalla (on-body) ja keholta poispäin seuraavaan liityntäpisteeseen (off-body). Tutkimustyö pohjautuu IEEE802.15.6-2012-standardiin sekä FCC:n UWB -säännöksiin. Väitöstyössä tarkastellaan taajuusriippuvan ihmiskudoksen mallintamista. Ihmiskudoskerrosten paksuuden vaikutusta antennin suorituskykyyn tutkitaan simuloimalla. Lisäksi tarkastellaan antennin syöttötehon vaikutusta kudoksen lämpiämisen ja tehon absorboitumisen näkökulmasta. Kehon aiheuttamien heijastusten vaikutusta säteilykuvioihin tarkastellaan teoreettisesti ja lisäksi esitetään menetelmä vaikuttaa antennin summapolarisaation kautta säteilykuvion muotoon keinotekoisella epäisotrooppisella substraatilla. Ehdotetulla menetelmällä, mitä ei ole aiemmin kirjallisuudessa esitetty kehoantenneille, voidaan minimoida nollakohtia ja saavuttaa tasainen säteilykuvio FCC UWB -taajuuskaistan yli. Kaksitie-mallia sovelletaan säteilykuvion muodon ennustamiseen kehon läheisyydessä. Useita antenniparametreja havainnollistetaan antennin käyttöetäisyyden funktiona ihmiskudoksesta. Antennin reaktiivisen lähikentän koko on tärkeä tekijä kehoantennille riittävän suorituskyvyn saavuttamiseksi. Absorptio-, epäsovitus- ja kehohäviöiden osuudet edelleen eritellään ja analysoidaan työssä. Työssä tutkitaan kompleksisen syöttöimpedanssin ja antennin fyysisten mittojen yhteyttä hyödyntämällä erilliskomponenteilla muodostettuja vastinpiirejä. Ensimmäistä kertaa antennin käytännön leveyden ja pituuden muutos esitetään suhteessa impedanssikäyttäytymiseen. Impedanssin muutos analysoidaan kapasitanssin, induktanssin ja resistanssin funktiona antennin reaktiivisen lähikentän alueella. Jotta kudoksen vaikutus antennin läheisyydessä voitaan ottaa suunnittelussa huomioon, työssä esitetään tarvittavat parasiittiset komponentit vastinkytkentöjen sarja- ja rinnanasteisiin

    Analyzing 5G RF system performance and relation to link budget for directive MIMO

    No full text
    Abstract Wideband fifth generation (5G) systems utilizing high carrier frequency and multiple-input multiple-output (MIMO) raise major challenges for the system design. Wave propagation and practical hardware tradeoffs at higher frequency ranges provide new boundary conditions for the implementation. This paper addresses system performance boundaries and the analysis method towards multibeam communications at mmW. We combine analysis from antennas and propagation to the RF transceiver specifications and beamforming requirements. Realistic propagation model and antenna implementation is used to generate beam-specific path gains and provide a wide variety of user scenarios. Using this approach, system level interdependencies and RF performance boundaries can be verified with different antenna configurations in various propagation environments. As an example, we present MIMO link budget analysis targeting 10 Gbits/s for multiple devices in the office scenario at 27 GHz

    Digital predistortion of amplitude varying phased array utilising over-the-air combining

    No full text
    Abstract In this paper, we propose a simple polynomial linearisation technique for nonlinear phased arrays including amplitude control. Due to the large number of antennas and thus power amplifiers in the array, it is inefficient to linearise each power amplifier individually. Therefore, it is demonstrated that the array can be linearised over-the-air using single polynomial. The simulations show that the linearisation is achieved by first linearising the higher driven PAs at the precompression region and then cancelling the compression by the heavily expanding lower driven PAs. The proposed approach offers an alternative way of re-thinking the concept of array linearisation over multiple PAs

    Finite integration technique based channel modeling on the wban receiver performance evaluation (Parkinson's disease monitoring case)

    No full text
    Abstract One of the main challenges for wireless body area networks (WBANs) is to evaluate realistic methods to generate channel models for new different purposes and various environments quickly and flexibly. Finite integration technique (FIT) has shown to be promising method for modeling channels characteristics in WBAN deployment scenarios. Applying simulation based channel modeling on the performance evaluations of the concrete-surrounded use scenarios have not been presented in the literature. In this paper, FIT-based channel modeling is applied on the performance evaluation of IEEE 802.15.6 based energy detector (ED) receiver designed for monitoring the symptoms of Parkinson’s disease. The first aim of this paper is to assess and compare the simulated channel impulse responses (CIRs) with the data from a measurement campaign. The second aim is to apply the simulated channel on the performance evaluations of the IEEE 802.15.6 based ED receivers. The obtained bit error rate (BER) performances are compared with BERs obtained using channel measurement data in the simulations. It is shown that performance obtained using FIT-based channel modeling corresponds to performance obtained using channel measurement data based channel modeling. The results of this paper further verify the statements that FIT is sufficiently applicable for WBAN channel modeling

    RF driven 5G system design for centimeter waves

    No full text
    Abstract 5G system design is a complex process due to a great variety of applications and their diverse requirements. This article describes our experiences in developing a centimeter waves mobile broadband concept satisfying future capacity requirements. The first step in the process was the radio channel measurement campaign and statistical modeling. Then the link level design was performed tightly together with the radio frequency (RF) implementation requirements to allow as large scalability of the air interface as possible. We started the concept development at 10 GHz frequency band and during the project World Radiocommunication Conference 2015 selected somewhat higher frequencies as new candidates for 5G. Thus, the main learning was to gain insight of interdependencies of different phenomena and find feasible combinations of techniques and parameter combinations that might actually work in practice, not only in theory

    Increased interictal synchronicity of respiratory related brain pulsations in epilepsy

    No full text
    Abstract Respiratory brain pulsations have recently been shown to drive electrophysiological brain activity in patients with epilepsy. Furthermore, functional neuroimaging indicates that respiratory brain pulsations have increased variability and amplitude in patients with epilepsy compared to healthy individuals. To determine whether the respiratory drive is altered in epilepsy, we compared respiratory brain pulsation synchronicity between healthy controls and patients. Whole brain fast functional magnetic resonance imaging was performed on 40 medicated patients with focal epilepsy, 20 drug-naïve patients and 102 healthy controls. Cerebrospinal fluid associated respiratory pulsations were used to generate individual whole brain respiratory synchronization maps, which were compared between groups. Finally, we analyzed the seizure frequency effect and diagnostic accuracy of the respiratory synchronization defect in epilepsy. Respiratory brain pulsations related to the verified fourth ventricle pulsations were significantly more synchronous in patients in frontal, periventricular and mid-temporal regions, while the seizure frequency correlated positively with synchronicity. The respiratory brain synchronicity had a good diagnostic accuracy (ROCAUC = 0.75) in discriminating controls from medicated patients. The elevated respiratory brain synchronicity in focal epilepsy suggests altered physiological effect of cerebrospinal fluid pulsations possibly linked to regional brain water dynamics involved with interictal brain physiology

    Human NREM Sleep Promotes Brain-Wide Vasomotor and Respiratory Pulsations

    No full text
    Abstract The physiological underpinnings of the necessity of sleep remain uncertain. Recent evidence suggests that sleep increases the convection of cerebrospinal fluid (CSF) and promotes the export of interstitial solutes, thus providing a framework to explain why all vertebrate species require sleep. Cardiovascular, respiratory and vasomotor brain pulsations have each been shown to drive CSF flow along perivascular spaces, yet it is unknown how such pulsations may change during sleep in humans. To investigate these pulsation phenomena in relation to sleep, we simultaneously recorded fast fMRI, magnetic resonance encephalography (MREG), and electroencephalography (EEG) signals in a group of healthy volunteers. We quantified sleep-related changes in the signal frequency distributions by spectral entropy analysis and calculated the strength of the physiological (vasomotor, respiratory, and cardiac) brain pulsations by power sum analysis in 15 subjects (age 26.5 ± 4.2 years, 6 females). Finally, we identified spatial similarities between EEG slow oscillation (0.2–2 Hz) power and MREG pulsations. Compared with wakefulness, nonrapid eye movement (NREM) sleep was characterized by reduced spectral entropy and increased brain pulsation intensity. These effects were most pronounced in posterior brain areas for very low-frequency (≤0.1 Hz) vasomotor pulsations but were also evident brain-wide for respiratory pulsations, and to a lesser extent for cardiac brain pulsations. There was increased EEG slow oscillation power in brain regions spatially overlapping with those showing sleep-related MREG pulsation changes. We suggest that reduced spectral entropy and enhanced pulsation intensity are characteristic of NREM sleep. With our findings of increased power of slow oscillation, the present results support the proposition that sleep promotes fluid transport in human brain

    Physiological instability is linked to mortality in primary central nervous system lymphoma:a case–control fMRI study

    No full text
    Abstract Primary central nervous system lymphoma (PCNSL) is an aggressive brain disease where lymphocytes invade along perivascular spaces of arteries and veins. The invasion markedly changes (peri)vascular structures but its effect on physiological brain pulsations has not been previously studied. Using physiological magnetic resonance encephalography (MREGBOLD) scanning, this study aims to quantify the extent to which (peri)vascular PCNSL involvement alters the stability of physiological brain pulsations mediated by cerebral vasculature. Clinical implications and relevance were explored. In this study, 21 PCNSL patients (median 67y; 38% females) and 30 healthy age-matched controls (median 63y; 73% females) were scanned for MREGBOLD signal during 2018–2021. Motion effects were removed. Voxel-by-voxel Coefficient of Variation (CV) maps of MREGBOLD signal was calculated to examine the stability of physiological brain pulsations. Group-level differences in CV were examined using nonparametric covariate-adjusted tests. Subject-level CV alterations were examined against control population Z-score maps wherein clusters of increased CV values were detected. Spatial distributions of clusters and findings from routine clinical neuroimaging were compared [contrast-enhanced, diffusion-weighted, fluid-attenuated inversion recovery (FLAIR) data]. Whole-brain mean CV was linked to short-term mortality with 100% sensitivity and 100% specificity, as all deceased patients revealed higher values (n = 5, median 0.055) than surviving patients (n = 16, median 0.028) (p < .0001). After adjusting for medication, head motion, and age, patients revealed higher CV values (group median 0.035) than healthy controls (group median 0.024) around arterial territories (p ≤ .001). Abnormal clusters (median 1.10 × 10₅mm₃) extended spatially beyond FLAIR lesions (median 0.62 × 10₅mm₃) with differences in volumes (p = .0055)
    corecore