4,413 research outputs found

    Predictions for multiplicities and flow harmonics in 5.44 TeV Xe+Xe collisions at the CERN Large Hadron Collider

    Get PDF
    We present the event-by-event next-to-leading-order perturbative-QCD + saturation + viscous hydrodynamics (EKRT) model predictions for the centrality dependence of the charged hadron multiplicity in the pseudorapidity interval |eta|Peer reviewe

    Predictions for 5.023 TeV Pb + Pb collisions at the CERN Large Hadron Collider

    Get PDF
    We compute predictions for various low-transverse-momentum bulk observables in root s(NN) = 5.023 TeV Pb+Pb collisions at the CERN Large Hadron Collider (LHC) from the event-by-event next-to-leading-order perturbative-QCD + saturation + viscous hydrodynamics ("EKRT") model. In particular, we consider the centrality dependence of charged hadron multiplicity, flow coefficients of the azimuth-angle asymmetries, and correlations of event-plane angles. The centrality dependencies of the studied observables are predicted to be very similar to those at 2.76 TeV, and the magnitudes of the flow coefficients and event-plane angle correlations are predicted to be close to those at 2.76 TeV. The flow coefficients may, however, offer slightly more discriminating power on the temperature dependence of QCD matter viscosity than the 2.76 TeV measurements. Our prediction for the multiplicity in the 0-5 % centrality class, obtained using the two temperature-dependent shear-viscosity-to-entropy ratios that give the best overall fit to BNL Relativistic Heavy Ion Collider (RHIC) and LHC data is dN(ch)/d eta vertical bar(vertical bar eta vertical barPeer reviewe

    Latest predictions from the EbyE NLO EKRT model

    Get PDF
    We present the latest results from the NLO pQCD + saturation + viscous hydrodynamics (EbyE NLO EKRT) model. The parameters in the EKRT saturation model are fixed by the charged hadron multiplicity in the 0-5 % 2.76 TeV Pb+Pb collisions. The root s, A and centrality dependence of the initial particle production follows then from the QCD dynamics of the model. This allows us to predict the root s and A dependence of the particle production. We show that our results are in an excellent agreement with the low-p(T) data from 2.76 TeV and 5.02 TeV Pb+Pb collisions at the LHC as well as with the data from the 200 GeV Au+Au collisions at RHIC. In particular, we study the centrality dependences of hadronic multiplicities, flow coefficients, and various flow correlations. Furthermore, the nuclear mass number dependence of the initial particle production and hydrodynamic evolution can be tested in the 5.44 TeV Xe+Xe collisions at the LHC. To this end, we show our predictions for charged particle multiplicities, and in particular, show how the deformations of the Xe nuclei reflect into the flow coefficients.Peer reviewe
    • …
    corecore