276 research outputs found
Recommended from our members
Shear-mediated sol-gel transition of regenerated silk allows the formation of Janus-like microgels
Abstract: Microcapsules and microgels consisting of macromolecular networks have received increasing attention due to their biomedical and pharmaceutical applications. Protein microgels and in particular silk-based microcapsules have desirable properties due to their biocompatibility and lack of toxicity. Typically such structures formed through emulsion templating are spherical in geometry due to interfacial tension. However, approaches to synthesis particles with more complex and non-spherical geometries are sought due to their packing properties and cargo release characteristics. Here, we describe a droplet-microfluidic strategy for generating asymmetric tubular-like microgels from reconstituted silk fibroin; a major component of native silk. It was determined using fluorescence microscopy, that the shear stress within the microchannel promotes surface protein aggregation, resulting in the asymmetric morphology of the microgels. Moreover, the structural transition that the protein undergoes was confirmed using FTIR. Crucially, the core of the microgels remains liquid, while the surface has fully aggregated into a fibrillar network. Additionally, we show that microgel morphology could be controlled by varying the dispersed to continuous phase flow rates, while it was determined that the radius of curvature of the asymmetric microgels is correlated to the wall shear stress. By comparing the surface fluorescence intensity of the microgels as a function of radius of curvature, the effect of the shear stress on the amount of aggregation could be quantified. Finally, the potential use of these asymmetric microgels as carriers of cargo molecules is showcased. As the core of the microgel remains liquid but the shell has gelled, this approach is highly suitable for the storage of bio-active cargo molecules such as antibodies, making such a delivery system attractive in the context of biomedical and pharmaceutical applications
Recommended from our members
Shear-mediated sol-gel transition of regenerated silk allows the formation of Janus-like microgels
Abstract: Microcapsules and microgels consisting of macromolecular networks have received increasing attention due to their biomedical and pharmaceutical applications. Protein microgels and in particular silk-based microcapsules have desirable properties due to their biocompatibility and lack of toxicity. Typically such structures formed through emulsion templating are spherical in geometry due to interfacial tension. However, approaches to synthesis particles with more complex and non-spherical geometries are sought due to their packing properties and cargo release characteristics. Here, we describe a droplet-microfluidic strategy for generating asymmetric tubular-like microgels from reconstituted silk fibroin; a major component of native silk. It was determined using fluorescence microscopy, that the shear stress within the microchannel promotes surface protein aggregation, resulting in the asymmetric morphology of the microgels. Moreover, the structural transition that the protein undergoes was confirmed using FTIR. Crucially, the core of the microgels remains liquid, while the surface has fully aggregated into a fibrillar network. Additionally, we show that microgel morphology could be controlled by varying the dispersed to continuous phase flow rates, while it was determined that the radius of curvature of the asymmetric microgels is correlated to the wall shear stress. By comparing the surface fluorescence intensity of the microgels as a function of radius of curvature, the effect of the shear stress on the amount of aggregation could be quantified. Finally, the potential use of these asymmetric microgels as carriers of cargo molecules is showcased. As the core of the microgel remains liquid but the shell has gelled, this approach is highly suitable for the storage of bio-active cargo molecules such as antibodies, making such a delivery system attractive in the context of biomedical and pharmaceutical applications
Nanoscale spatially resolved infrared spectra from single microdroplets
Droplet microfluidics has emerged as a powerful platform allowing a large
number of individual reactions to be carried out in spatially distinct
microcompartments. Due to their small size, however, the spectroscopic
characterisation of species encapsulated in such systems remains challenging.
In this paper, we demonstrate the acquisition of infrared spectra from single
microdroplets containing aggregation-prone proteins. To this effect, droplets
are generated in a microfluidic flow-focussing device and subsequently
deposited in a square array onto a ZnSe prism using a micro stamp. After
drying, the solutes present in the droplets are illuminated locally by an
infrared laser through the prism, and their thermal expansion upon absorption
of infrared radiation is measured with an atomic force microscopy tip, granting
nanoscale resolution. Using this approach, we resolve structural differences in
the amide bands of the spectra of monomeric and aggregated lysozyme from single
microdroplets with picolitre volume.Comment: 5 pages, 3 Figure
Consistent treatment of hydrophobicity in protein lattice models accounts for cold denaturation
The hydrophobic effect stabilizes the native structure of proteins by
minimizing the unfavourable interactions between hydrophobic residues and water
through the formation of a hydrophobic core. Here we include the entropic and
enthalpic contributions of the hydrophobic effect explicitly in an implicit
solvent model. This allows us to capture two important effects: a length-scale
dependence and a temperature dependence for the solvation of a hydrophobic
particle. This consistent treatment of the hydrophobic effect explains cold
denaturation and heat capacity measurements of solvated proteins.Comment: Added and corrected references for design procedure in main text (p.
2) and in Supplemental Information (p. 8
DNA-coated Functional Oil Droplets
Many industrial soft materials often include oil-in-water (O/W) emulsions at
the core of their formulations. By using tuneable interface stabilizing agents,
such emulsions can self-assemble into complex structures. DNA has been used for
decades as a thermoresponsive highly specific binding agent between hard and,
recently, soft colloids. Up until now, emulsion droplets functionalized with
DNA had relatively low coating densities and were expensive to scale up. Here a
general O/W DNA-coating method using functional non-ionic amphiphilic block
copolymers, both diblock and triblock, is presented. The hydrophilic
polyethylene glycol ends of the surfactants are functionalized with azides,
allowing for efficient, dense and controlled coupling of dibenzocyclooctane
functionalized DNA to the polymers through a strain-promoted alkyne-azide click
reaction. The protocol is readily scalable due to the triblock's commercial
availability. Different production methods (ultrasonication, microfluidics and
membrane emulsification) are used with different oils (hexadecane and silicone
oil) to produce functional droplets in various size ranges (sub-micron, and ), showcasing the generality of
the protocol. Thermoreversible sub-micron emulsion gels, hierarchical
"raspberry" droplets and controlled droplet release from a flat DNA-coated
surface are demonstrated. The emulsion stability and polydispersity is
evaluated using dynamic light scattering and optical microscopy. The generality
and simplicity of the method opens up new applications in soft matter and
biotechnological research and industrial advances.Comment: 7 pages, 2 figures, 1 tabl
Enhancing the resolution of micro free flow electrophoresis through spatially controlled sample injection
Free flow electrophoresis is a versatile technique for the continuous separation of mixtures with both preparative and analytical applications. Microscale versions of free flow electrophoresis are particularly attractive strategies because of their fast separation times, ability to work with small sample volumes and large surface area to volume ratios facilitating rapid heat transfer, thus minimising the detrimental effects of Joule heating even at high voltages. The resolution of microscale free flow electrophoresis, however, is limited by the broadening of the analyte beam in the microfluidic channel - an effect that becomes especially pronounced when the analyte is deflected significantly away from its original position. Here we describe and demonstrate how by spatially restricting the sample injection and collection to the regions where the gradients in the velocity distribution of the carrier medium are the smallest, this broadening effect can be substantially suppressed and hence the resolution of microscale free flow electrophoresis devices increased. To demonstrate this concept we fabricated microfluidic free flow electrophoresis devices with spatially restricted injection nozzles implemented via the use of multilayer soft-photolithography and further integrated quartz based observation areas for fluorescent detection and imaging. With these devices we demonstrated a five fold reduction in the beam broadening extent compared to conventional free flow electrophoresis approaches with non-restricted sample introduction. The manifold enhancement in the achievable resolution of microscale free flow electrophoresis devices opens up the possibility of rapid separation and analysis of more complex mixtures
Dominance analysis to assess solute contributions to multicomponent phase equilibria
Phase separation in aqueous solutions of macromolecules underlies the generation of biomolecular condensates in cells. Condensates are membraneless bodies, representing dense, macromolecule-rich phases that coexist with the dilute, macromolecule-deficient phases. In cells, condensates comprise hundreds of different macromolecular and small molecule solutes. How do different solutes contribute to the driving forces for phase separation? To answer this question, we introduce a formalism we term energy dominance analysis. This approach rests on analysis of shapes of the dilute phase boundaries, slopes of tie lines, and changes to dilute phase concentrations in response to perturbations of concentrations of different solutes. The framework is based solely on conditions for phase equilibria in systems with arbitrary numbers of macromolecules and solution components. Its practical application relies on being able to measure dilute phase concentrations of the components of interest. The dominance framework is both theoretically facile and experimentally applicable. We present the formalism that underlies dominance analysis and establish its accuracy and flexibility by deploying it to analyze phase diagrams probed in simulations and in experiments
Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films.
Funder: Biotechnology and Biological Sciences Research CouncilThe abundance of plant-derived proteins, as well as their biodegradability and low environmental impact make them attractive polymeric feedstocks for next-generation functional materials to replace current petroleum-based systems. However, efforts to generate functional materials from plant-based proteins in a scalable manner have been hampered by the lack of efficient methods to induce and control their micro and nanoscale structure, key requirements for achieving advantageous material properties and tailoring their functionality. Here, we demonstrate a scalable approach for generating mechanically robust plant-based films on a metre-scale through controlled nanometre-scale self-assembly of water-insoluble plant proteins. The films produced using this method exhibit high optical transmittance, as well as robust mechanical properties comparable to engineering plastics. Furthermore, we demonstrate the ability to impart nano- and microscale patterning into such films through templating, leading to the formation of hydrophobic surfaces as well as structural colour by controlling the size of the patterned features
- …