4 research outputs found

    Oxidation of Dichloromethane over Au, Pt, and Pt-Au Containing Catalysts Supported on γ-Al2O3 and CeO2-Al2O3

    No full text
    Au, Pt, and Pt-Au catalysts supported on Al2O3 and CeO2-Al2O3 were studied in the oxidation of dichloromethane (DCM, CH2Cl2). High DCM oxidation activities and HCl selectivities were seen with all the catalysts. With the addition of Au, remarkably lower light-off temperatures were observed as they were reduced by 70 and 85 degrees with the Al2O3-supported and by 35 and 40 degrees with the CeO2-Al2O3-supported catalysts. Excellent HCl selectivities close to 100% were achieved with the Au/Al2O3 and Pt-Au/Al2O3 catalysts. The addition of ceria on alumina decreased the total acidity of these catalysts, resulting in lower performance. The 100-h stability test showed that the Pt-Au/Al2O3 catalyst was active and durable, but the selectivity towards the total oxidation products needs improvement. The results suggest that, with the Au-containing Al2O3-supported catalysts, DCM decomposition mainly occurs via direct DCM hydrolysis into formaldehyde and HCl followed by the oxidation of formaldehyde into CO and CO2

    Catalytic Oxidation of Dimethyl Disulfide over Bimetallic Cu–Au and Pt–Au Catalysts Supported on γ-Al2O3, CeO2, and CeO2–Al2O3

    No full text
    Dimethyl disulfide (DMDS, CH3SSCH3) is an odorous and harmful air pollutant (volatile organic compound (VOC)) causing nuisance in urban areas. The abatement of DMDS emissions from industrial sources can be realized through catalytic oxidation. However, the development of active and selective catalysts having good resistance toward sulfur poisoning is required. This paper describes an investigation related to improving the performance of Pt and Cu catalysts through the addition of Au to monometallic “parent” catalysts via surface redox reactions. The catalysts were characterized using ICP-OES, N2 physisorption, XRD, XPS, HR-TEM, H2-TPR, NH3-TPD, CO2-TPD, and temperature-programmed 18O2 isotopic exchange. The performance of the catalysts was evaluated in DMDS total oxidation. In addition, the stability of a Pt–Au/Ce–Al catalyst was investigated through 40 h time onstream. Cu–Au catalysts were observed to be more active than corresponding Pt–Au catalysts based on DMDS light-off experiments. However, the reaction led to a higher amount of oxygen-containing byproduct formation, and thus the Pt–Au catalysts were more selective. H2-TPR showed that the higher redox capacity of the Cu-containing catalysts may have been the reason for better DMDS conversion and lower selectivity. The lower amount of reactive oxygen on the surface of Pt-containing catalysts was beneficial for total oxidation. The improved selectivity of ceria-containing catalysts after the Au addition may have resulted from the lowered amount of reactive oxygen as well. The Au addition improved the activity of Al2O3-supported Cu and Pt. The Au addition also had a positive effect on SO2 production in a higher temperature region. A stability test of 40 h showed that the Pt–Au/Ce–Al catalyst, while otherwise promising, was not stable enough, and further development is still needed

    Oxidation of dichloromethane over Au, Pt, and Pt-Au containing catalysts supported on γ-Al₂O₃ and CeO₂-Al₂O₃

    No full text
    Abstract Au, Pt, and Pt-Au catalysts supported on Al₂O₃ and CeO₂-Al₂O₃ were studied in the oxidation of dichloromethane (DCM, CH₂Cl₂). High DCM oxidation activities and HCl selectivities were seen with all the catalysts. With the addition of Au, remarkably lower light-off temperatures were observed as they were reduced by 70 and 85 degrees with the Al₂O₃-supported and by 35 and 40 degrees with the CeO₂-Al₂O₃-supported catalysts. Excellent HCl selectivities close to 100% were achieved with the Au/Al₂O₃ and Pt-Au/Al₂O₃ catalysts. The addition of ceria on alumina decreased the total acidity of these catalysts, resulting in lower performance. The 100-h stability test showed that the Pt-Au/Al₂O₃ catalyst was active and durable, but the selectivity towards the total oxidation products needs improvement. The results suggest that, with the Au-containing Al₂O₃-supported catalysts, DCM decomposition mainly occurs via direct DCM hydrolysis into formaldehyde and HCl followed by the oxidation of formaldehyde into CO and CO₂

    Catalytic oxidation of dimethyl disulfide over bimetallic Cu–Au and Pt–Au catalysts supported on γ-Al₂O₃, CeO₂, and CeO₂–Al₂O₃

    No full text
    Abstract Dimethyl disulfide (DMDS, CH3SSCH3) is an odorous and harmful air pollutant (volatile organic compound (VOC)) causing nuisance in urban areas. The abatement of DMDS emissions from industrial sources can be realized through catalytic oxidation. However, the development of active and selective catalysts having good resistance toward sulfur poisoning is required. This paper describes an investigation related to improving the performance of Pt and Cu catalysts through the addition of Au to monometallic “parent” catalysts via surface redox reactions. The catalysts were characterized using ICP-OES, N2 physisorption, XRD, XPS, HR-TEM, H2-TPR, NH3-TPD, CO2-TPD, and temperature-programmed 18O2 isotopic exchange. The performance of the catalysts was evaluated in DMDS total oxidation. In addition, the stability of a Pt–Au/Ce–Al catalyst was investigated through 40 h time onstream. Cu–Au catalysts were observed to be more active than corresponding Pt–Au catalysts based on DMDS light-off experiments. However, the reaction led to a higher amount of oxygen-containing byproduct formation, and thus the Pt–Au catalysts were more selective. H2-TPR showed that the higher redox capacity of the Cu-containing catalysts may have been the reason for better DMDS conversion and lower selectivity. The lower amount of reactive oxygen on the surface of Pt-containing catalysts was beneficial for total oxidation. The improved selectivity of ceria-containing catalysts after the Au addition may have resulted from the lowered amount of reactive oxygen as well. The Au addition improved the activity of Al2O3-supported Cu and Pt. The Au addition also had a positive effect on SO2 production in a higher temperature region. A stability test of 40 h showed that the Pt–Au/Ce–Al catalyst, while otherwise promising, was not stable enough, and further development is still needed
    corecore