1 research outputs found

    Eliminating Nanocrystal Surface Light Loss and Ion Migration to Achieve Bright Mixed-Halide Blue Perovskite LEDs

    No full text
    Blue light-emittin g diodes (LEDs) are important components for perovskite electroluminescence applications, which still suffer from insufficient luminescence efficiency and poor stability. In Cl/Br mixed perovskite NCs, surficial defects cause severe light failure and ion migration, the in-depth mechanism of which is also not clear. To gain insights into these issues, we employ the ligand post-addition approach for mixed Cl/Br NCs by using octylammonium hydrobromide (OctBr) ligands, which effectively decrease surficial light loss and block ion migration pathways. The passivated CsPbCl1.5Br1.5 NCs exhibit exceptional blue emission with 95% PLQY, and the electroluminescence spectra of LEDs are located at the initial positions at the initial states. The treated NC blue devices show a negligible color shift as the voltage increases, which proves that electric-field-driven ion migration is drastically suppressed. In addition, OctBr-treated CsPbCl1.5Br1.5 and CsPbClBr2 NC LEDs show high external quantum efficiencies of 2.42 and 3.05% for emission peaks at 456 and 480 nm, respectively. Our work identified the nature of NC surface defects and provided a surficial modification approach to develop high-performance and color-stable blue mixed-halide perovskite LEDs
    corecore