17 research outputs found

    Amorphous formulations of indomethacin and griseofulvin prepared by electrospinning

    Get PDF
    Following an array of optimization experiments, two series of electrospun polyvinylpyrrolidone (PVP) fibers were prepared. One set of fibers contained various loadings of indomethacin, known to form stable glasses, and the other griseofulvin (a poor glass former). Drug loadings of up to 33% w/w were achieved. Electron microscopy data showed the fibers largely to comprise smooth and uniform cylinders, with evidence for solvent droplets in some samples. In all cases, the drug was found to exist in the amorphous physical state in the fibers on the basis of X-ray diffraction and differential scanning calorimetry (DSC) measurements. Modulated temperature DSC showed that the relationship between a formulation’s glass transition temperature (<i>T</i><sub>g</sub>) and the drug loading follows the Gordon–Taylor equation, but not the Fox equation. The results of Gordon–Taylor analysis indicated that the drug/polymer interactions were stronger with indomethacin. The interactions between drug and polymer were explored in more detail using molecular modeling simulations and again found to be stronger with indomethacin; the presence of significant intermolecular forces was further confirmed using IR spectroscopy. The amorphous form of both drugs was found to be stable after storage of the fibers for 8 months in a desiccator (relative humidity <25%). Finally, the functional performance of the fibers was studied; in all cases, the drug-loaded fibers released their drug cargo very rapidly, offering accelerated dissolution over the pure drug

    Ethyl cellulose, cellulose acetate and carboxymethyl cellulose microstructures prepared using electrohydrodynamics and green solvents

    Get PDF
    Cellulose derivatives are an attractive sustainable material used frequently in biomaterials, however their solubility in safe, green solvents is not widely exploited. In this work three cellulose derivatives; ethyl cellulose, cellulose acetate and carboxymethyl cellulose were subjected to electrohydrodynamic processing. All were processed with safe, environmentally friendly solvents; ethanol, acetone and water. Ethyl cellulose was electrospun and an interesting transitional region was identified. The morphological changes from particles with tails to thick fibres were charted from 17 to 25 wt% solutions. The concentration and solvent composition of cellulose acetate (CA) solutions were then changed; increasing the concentration also increased fibre size. At 10 wt% CA, with acetone only, fibres with heavy beading were produced. In an attempt to incorporate water in the binary solvent system to reduce the acetone content, 80:20 acetone/water solvent system was used. It was noted that for the same concentration of CA (10 wt%), the beading was reduced. Finally, carboxymethyl cellulose was electrospun with poly(ethylene oxide), with the molecular weight and polymer compositions changed and the morphology observed
    corecore