1,673 research outputs found
An Efficient Fitness Function in Genetic Algorithm Classifier for Landuse Recognition on Satellite Images
Genetic algorithm (GA) is designed to search the optimal solution via weeding out the worse gene strings based on a fitness function. GA had demonstrated effectiveness in solving the problems of unsupervised image classification, one of the optimization problems in a large domain. Many indices or hybrid algorithms as a fitness function in a GA classifier are built to improve the classification accuracy. This paper proposes a new index, DBFCMI, by integrating two common indices, DBI and FCMI, in a GA classifier to improve the accuracy and robustness of classification. For the purpose of testing and verifying DBFCMI, well-known indices such as DBI, FCMI, and PASI are employed as well for comparison. A SPOT-5 satellite image in a partial watershed of Shihmen reservoir is adopted as the examined material for landuse classification. As a result, DBFCMI acquires higher overall accuracy and robustness than the rest indices in unsupervised classification
Temperature Swing Adsorption Process for CO2 Capture Using Polyaniline Solid Sorbent
AbstractTo capture carbon dioxide from power plant flue gas which consists of 15% CO2 and 85% N2, with a temperature swing adsorption (TSA) by using polyaniline solid sorbent as the adsorbent, is explored experimentally and theoretically. First, single component adsorption equilibrium data of carbon dioxide on polyaniline solid sorbent is obtained by using Micro-Balance Thermo D-200. Then isotherm curves and the parameters are obtained by numerical method. The adsorption is expressed by the Langmuir-Freundlich isotherm. After accomplishment of isotherm curves, the breakthrough curve experiment is investigated with single adsorption column. The experiments test the change in adsorbed gas concentration at the outlet by adsorbed gas, CO2, and non-adsorbed gas, helium. Finally, this study accentuates the TSA experiments on CO2 purity and recovery by operation variable discussion which includes feed pressure, adsorption temperature and desorption temperature to find optimal operation condition. The results of optimal operation condition are CO2 purity of 47.65% with a 92.46% recovery
The Effects of Endurance Running Training on Young Adult Bone: Densitometry vs. Biomaterial Properties
Densitometric measurement of bone mineral parameters has been developed in recent decades. Since bone strength is associated with bone mineral density (BMD) and/or bone mineral content (BMC), densitometric measurement is widely accepted and used as one golden standard in clinical settings to determine bone health. Based on this concept, some human studies have suggested that endurance training, such as long distance running, provides no benefit and may even be harmful to bone health or bone mineral accretion during development, since long distance runners often have low BMD and/or BMC and may even exhibit conditions associated with bone loss or osteopenia.1, 2 Conversely, serum bone marker assays in healthy distance runners show normal or positive bone metabolism status.3, 4 Therefore, the definite role of endurance running training (ERT) on bone health remains a controversial issue. It would be valuable to further clarify whether ERT benefits bone health through a pathway other than absolutely increasing BMD or BMC. Clinical observations of human subjects require further basic studies to investigate possible mechanisms. Animal studies can provide unique ways not feasible in studies using human subjects of assessing the effects of endurance running on bone. Generally, previous animal studies further verified benefits of ERT to bone health. However, the limitations of animal studies must be clarified before applying their findings to human beings. The present article reviews the phenomena shown in bone of adolescent or young adult distance runners. Moreover, previous animal studies which adopted growing and young adult rats as subjects are reviewed, and the applicability of the findings to humans is also discussed
Evidence of d-phenylglycine as delivering tool for improving l-dopa absorption
<p>Abstract</p> <p>Background</p> <p><it>l</it>-Dopa has been used for Parkinson's disease management for a long time. However, its wide variety in the rate and the extent of absorption remained challenge in designing suitable therapeutic regime. We report here a design of using <it>d</it>-phenylglycine to guard <it>l</it>-dopa for better absorption in the intestine via intestinal peptide transporter I (PepT1).</p> <p>Methods</p> <p><it>d</it>-Phenylglycine was chemically attached on <it>l</it>-dopa to form <it>d</it>-phenylglycine-<it>l</it>-dopa as a dipeptide prodrug of <it>l</it>-dopa. The cross-membrane transport of this dipeptide and <it>l</it>-dopa via PepT1 was compared in brush-boarder membrane vesicle (BBMV) prepared from rat intestine. The intestinal absorption was compared by <it>in situ </it>jejunal perfusion in rats. The pharmacokinetics after i.v. and p.o. administration of both compounds were also compared in Wistar rats. The striatal dopamine released after i.v. administration of <it>d</it>-phenylglycine-<it>l</it>-dopa was collected by brain microdialysis and monitored by HPLC. Anti-Parkinsonism effect was determined by counting the rotation of 6-OHDA-treated unilateral striatal lesioned rats elicited rotation with (+)-methamphetamine (MA).</p> <p>Results</p> <p>The BBMV uptake of <it>d</it>-phenylglycine-<it>l</it>-dopa was inhibited by Gly-Pro, Gly-Phe and cephradine, the typical PepT1 substrates, but not by amino acids Phe or <it>l</it>-dopa. The cross-membrane permeability (Pm*) determined in rat jejunal perfusion of <it>d</it>-phenylglycine-<it>l</it>-dopa was higher than that of <it>l</it>-dopa (2.58 ± 0.14 vs. 0.94 ± 0.10). The oral bioavailability of <it>d</it>-phenylglycine-<it>l</it>-dopa was 31.7 times higher than that of <it>l-</it>dopa in rats. A sustained releasing profile of striatal dopamine was demonstrated after i. v. injection of <it>d</it>-phenylglycine-<it>l</it>-dopa (50 mg/kg), indicated that <it>d</it>-phenylglycine-<it>l</it>-dopa might be a prodrug of dopamine. <it>d</it>-Phenylglycine-<it>l</it>-dopa was more efficient than <it>l-</it>dopa in lowering the rotation of unilateral striatal lesioned rats (19.1 ± 1.7% vs. 9.9 ± 1.4%).</p> <p>Conclusion</p> <p>The BBMV uptake studies indicated that <it>d</it>-phenylglycine facilitated the transport of <it>l</it>-dopa through the intestinal PepT1 transporter. The higher jejunal permeability and the improved systemic bioavailability of <it>d-</it>phenylglycine-<it>l</it>-dopa in comparison to that of <it>l</it>-dopa suggested that <it>d-</it>phenylglycine is an effective delivery tool for improving the oral absorption of drugs like <it>l</it>-dopa with unsatisfactory pharmacokinetics. The gradual release of dopamine in brain striatum rendered this dipeptide as a potential dopamine sustained-releasing prodrug.</p
Residual kinematic deviations of the shoulder during humeral elevation after conservative treatment for mid-shaft clavicle fractures
Despite residual functional deficits clinically observed in conservatively treated mid-shaft clavicle fractures, no study has reported a quantitative assessment of the treatment effects on the kinematics of the shoulder complex during functional movement. Using computerised motion analysis, the current study quantified the 3D residual kinematic deviations or strategies of the shoulder complex bones during multi-plane elevations in fifteen patients with conservatively treated mid-shaft clavicle fractures and fifteen healthy controls. Despite residual clavicular malunion, the patients recovered normal shoulder kinematics for arm elevations up to 60° in all three tested planes. For elevations beyond 60°, normal clavicle kinematics but significantly increased scapular posterior tilt relative to the trunk was observed in the patient group, leading to significantly increased clavicular protraction and posterior tilt relative to the scapula (i.e., AC joint). Slightly different changes were found in the sagittal plane, showing additional changes of increased scapular upward rotations at 90° and 120° elevations. Similar kinematic changes were also found on the unaffected side, indicating a trend of symmetrical bilateral adaptation. The current results suggest that shoulder kinematics in multi-plane arm elevations should be monitored for any compromised integrated motions of the individual bones following conservative treatment. Rehabilitation strategies, including muscle strengthening and synergy stability training, should also consider compensatory kinematic changes on the unaffected side to improve the bilateral movement control of the shoulder complex during humeral elevation
Targeting PML-RARα and Oncogenic Signaling Pathways by Chinese Herbal Mixture Tien-Hsien Liquid in Acute Promyelocytic Leukemia NB4 Cells
Tien-Hsien Liquid (THL) is a Chinese herbal mixture that has been used worldwide as complementary treatment for cancer patients in the past decade. Recently, THL has been shown to induce apoptosis in various types of solid tumor cells in vitro. However, the underlying molecular mechanisms have not yet been well elucidated. In this study, we explored the effects of THL on acute promyelocytic leukemia (APL) NB4 cells, which could be effectively treated by some traditional Chinese remedies containing arsenic trioxide. The results showed THL could induce G2/M arrest and apoptosis in NB4 cells. Accordingly, the decrease of cyclin A and B1 were observed in THL-treated cells. The THL-induced apoptosis was accompanied with caspase-3 activation and decrease of PML-RARα fusion protein. Moreover, DNA methyltransferase 1 and oncogenic signaling pathways such as Akt/mTOR, Stat3 and ERK were also down-regulated by THL. By using ethyl acetate extraction and silica gel chromatography, an active fraction of THL named as EAS5 was isolated. At about 0.5–1% of the dose of THL, EAS5 appeared to have most of THL-induced multiple molecular targeting effects in NB4 cells. Based on the findings of these multi-targeting effects, THL might be regarding as a complementary and alternative therapeutic agent for refractory APL
Enhanced Antifungal Bioactivity of Coptis Rhizome Prepared by Ultrafining Technology
The aim of this study was to identify and quantify the bioactive constituents in the methanol extracts of Coptis Rhizome prepared by ultrafining technology. The indicator compound was identified by spectroscopic method and its purity was determined by HPLC. Moreover, the crude extracts and indicator compound were examined for their ability to inhibit the growth of Rhizoctonia solani Kühn AG-4 on potato dextrose agar plates. The indicator compound is a potential candidate as a new plant derived pesticide to control Rhizoctonia damping-off in vegetable seedlings. In addition, the extracts of Coptis Rhizome prepared by ultrafining technology displayed higher contents of indicator compound; they not only improve their bioactivity but also reduce the amount of the pharmaceuticals required and, thereby, decrease the environmental degradation associated with the harvesting of the raw products
- …