387 research outputs found

    Topological susceptibility in finite temperature QCD with physical (u/d,s,c)(u/d, s, c) domain-wall quarks

    Full text link
    We perform hybrid Monte-Carlo (HMC) simulation of lattice QCD with Nf=2+1+1N_f=2+1+1 domain-wall quarks at the physical point, on the 643×(64,20,16,12,10,8,6)64^3 \times (64,20,16,12,10,8,6) lattices, each with three lattice spacings. The lattice spacings and the bare quark masses are determined on the 64464^4 lattices. The resulting gauge ensembles provide a basis for studying finite temperature QCD with Nf=2+1+1N_f=2+1+1 domain-wall quarks at the physical point. In this paper, we determine the topological susceptibility of the QCD vacuum for T>Tc150T > T_c \sim 150 MeV. The topological charge of each gauge configuration is measured by the clover charge in the Wilson flow at the same flow time in physical units, and the topological susceptibility χt(a,T) \chi_t(a,T) is determined for each ensemble with lattice spacing aa and temperature TT. Using the topological susceptibility χt(a,T)\chi_t(a,T) of 15 gauge ensembles with three lattice spacings and different temperatures in the range T155516T \sim 155-516 MeV, we extract the topological susceptibility χt(T)\chi_t(T) in the continuum limit. Moreover, a detailed discussion on the reweighting method for domain-wall fermion is presented.Comment: 36 pages, 5 figure

    Decay Constants of Pseudoscalar DD-mesons in Lattice QCD with Domain-Wall Fermion

    Get PDF
    We present the first study of the masses and decay constants of the pseudoscalar D D mesons in two flavors lattice QCD with domain-wall fermion. The gauge ensembles are generated on the 243×4824^3 \times 48 lattice with the extent Ns=16 N_s = 16 in the fifth dimension, and the plaquette gauge action at β=6.10 \beta = 6.10 , for three sea-quark masses with corresponding pion masses in the range 260475260-475 MeV. We compute the point-to-point quark propagators, and measure the time-correlation functions of the pseudoscalar and vector mesons. The inverse lattice spacing is determined by the Wilson flow, while the strange and the charm quark masses by the masses of the vector mesons ϕ(1020) \phi(1020) and J/ψ(3097) J/\psi(3097) respectively. Using heavy meson chiral perturbation theory (HMChPT) to extrapolate to the physical pion mass, we obtain fD=202.3(2.2)(2.6) f_D = 202.3(2.2)(2.6) MeV and fDs=258.7(1.1)(2.9) f_{D_s} = 258.7(1.1)(2.9) MeV.Comment: 15 pages, 3 figures. v2: the statistics of ensemble (A) with m_sea = 0.005 has been increased, more details on the systematic error, to appear in Phys. Lett.

    Paeonol Protects Memory after Ischemic Stroke via Inhibiting β-Secretase and Apoptosis

    Get PDF
    Poststroke dementia commonly occurs following stroke, with its pathogenesis related to β-amyloid production and apoptosis. The present study evaluate the effects of paeonol, one of the phenolic phytochemicals isolated from the Chinese herb Paeonia suffruticosa Andrews (MC), on protection from memory loss after ischemic stroke in the subacute stage. Rats were subjected to transient middle cerebral artery occlusion (tMCAo) with 10 min of ischemia. The data revealed that paeonol recovered the step-through latency in the retrieval test seven days after tMCAo, but did not improve the neurological deficit induced by tMCAo. Levels of Amyloid precursor protein (APP)- and beta-site APP cleaving enzyme (BACE; β-secretase)-immunoreactive cells, and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells decreased in the paeonol-administered group. Western blotting revealed decreased levels of Bax protein in mitochondria and apoptosis-inducing factor (AIF) in cytosol following paeonol treatment. In conclusion, we speculate that paeonol protected memory after ischemic stroke via reducing APP, BACE, and apoptosis. Supression the level of Bax and blocking the release of AIF into cytosol might participate in the anti-apoptosis provided by paeonol
    corecore