1,178 research outputs found

    Consistency and convergence rate of phylogenetic inference via regularization

    Full text link
    It is common in phylogenetics to have some, perhaps partial, information about the overall evolutionary tree of a group of organisms and wish to find an evolutionary tree of a specific gene for those organisms. There may not be enough information in the gene sequences alone to accurately reconstruct the correct "gene tree." Although the gene tree may deviate from the "species tree" due to a variety of genetic processes, in the absence of evidence to the contrary it is parsimonious to assume that they agree. A common statistical approach in these situations is to develop a likelihood penalty to incorporate such additional information. Recent studies using simulation and empirical data suggest that a likelihood penalty quantifying concordance with a species tree can significantly improve the accuracy of gene tree reconstruction compared to using sequence data alone. However, the consistency of such an approach has not yet been established, nor have convergence rates been bounded. Because phylogenetics is a non-standard inference problem, the standard theory does not apply. In this paper, we propose a penalized maximum likelihood estimator for gene tree reconstruction, where the penalty is the square of the Billera-Holmes-Vogtmann geodesic distance from the gene tree to the species tree. We prove that this method is consistent, and derive its convergence rate for estimating the discrete gene tree structure and continuous edge lengths (representing the amount of evolution that has occurred on that branch) simultaneously. We find that the regularized estimator is "adaptive fast converging," meaning that it can reconstruct all edges of length greater than any given threshold from gene sequences of polynomial length. Our method does not require the species tree to be known exactly; in fact, our asymptotic theory holds for any such guide tree.Comment: 34 pages, 5 figures. To appear on The Annals of Statistic

    On the convergence of the maximum likelihood estimator for the transition rate under a 2-state symmetric model

    Full text link
    Maximum likelihood estimators are used extensively to estimate unknown parameters of stochastic trait evolution models on phylogenetic trees. Although the MLE has been proven to converge to the true value in the independent-sample case, we cannot appeal to this result because trait values of different species are correlated due to shared evolutionary history. In this paper, we consider a 22-state symmetric model for a single binary trait and investigate the theoretical properties of the MLE for the transition rate in the large-tree limit. Here, the large-tree limit is a theoretical scenario where the number of taxa increases to infinity and we can observe the trait values for all species. Specifically, we prove that the MLE converges to the true value under some regularity conditions. These conditions ensure that the tree shape is not too irregular, and holds for many practical scenarios such as trees with bounded edges, trees generated from the Yule (pure birth) process, and trees generated from the coalescent point process. Our result also provides an upper bound for the distance between the MLE and the true value

    SPADE4: Sparsity and Delay Embedding based Forecasting of Epidemics

    Full text link
    Predicting the evolution of diseases is challenging, especially when the data availability is scarce and incomplete. The most popular tools for modelling and predicting infectious disease epidemics are compartmental models. They stratify the population into compartments according to health status and model the dynamics of these compartments using dynamical systems. However, these predefined systems may not capture the true dynamics of the epidemic due to the complexity of the disease transmission and human interactions. In order to overcome this drawback, we propose Sparsity and Delay Embedding based Forecasting (SPADE4) for predicting epidemics. SPADE4 predicts the future trajectory of an observable variable without the knowledge of the other variables or the underlying system. We use random features model with sparse regression to handle the data scarcity issue and employ Takens' delay embedding theorem to capture the nature of the underlying system from the observed variable. We show that our approach outperforms compartmental models when applied to both simulated and real data.Comment: 24 pages, 13 figures, 2 table

    Birth/birth-death processes and their computable transition probabilities with biological applications

    Full text link
    Birth-death processes track the size of a univariate population, but many biological systems involve interaction between populations, necessitating models for two or more populations simultaneously. A lack of efficient methods for evaluating finite-time transition probabilities of bivariate processes, however, has restricted statistical inference in these models. Researchers rely on computationally expensive methods such as matrix exponentiation or Monte Carlo approximation, restricting likelihood-based inference to small systems, or indirect methods such as approximate Bayesian computation. In this paper, we introduce the birth(death)/birth-death process, a tractable bivariate extension of the birth-death process. We develop an efficient and robust algorithm to calculate the transition probabilities of birth(death)/birth-death processes using a continued fraction representation of their Laplace transforms. Next, we identify several exemplary models arising in molecular epidemiology, macro-parasite evolution, and infectious disease modeling that fall within this class, and demonstrate advantages of our proposed method over existing approaches to inference in these models. Notably, the ubiquitous stochastic susceptible-infectious-removed (SIR) model falls within this class, and we emphasize that computable transition probabilities newly enable direct inference of parameters in the SIR model. We also propose a very fast method for approximating the transition probabilities under the SIR model via a novel branching process simplification, and compare it to the continued fraction representation method with application to the 17th century plague in Eyam. Although the two methods produce similar maximum a posteriori estimates, the branching process approximation fails to capture the correlation structure in the joint posterior distribution
    corecore