6,254 research outputs found

    APMEC: An Automated Provisioning Framework for Multi-access Edge Computing

    Full text link
    Novel use cases and verticals such as connected cars and human-robot cooperation in the areas of 5G and Tactile Internet can significantly benefit from the flexibility and reduced latency provided by Network Function Virtualization (NFV) and Multi-Access Edge Computing (MEC). Existing frameworks managing and orchestrating MEC and NFV are either tightly coupled or completely separated. The former design is inflexible and increases the complexity of one framework. Whereas, the latter leads to inefficient use of computation resources because information are not shared. We introduce APMEC, a dedicated framework for MEC while enabling the collaboration with the management and orchestration (MANO) frameworks for NFV. The new design allows to reuse allocated network services, thus maximizing resource utilization. Measurement results have shown that APMEC can allocate up to 60% more number of network services. Being developed on top of OpenStack, APMEC is an open source project, available for collaboration and facilitating further research activities

    Collider Inclusive Jet Data and the Gluon Distribution

    Full text link
    Inclusive jet production data are important for constraining the gluon distribution in the global QCD analysis of parton distribution functions. With the addition of recent CDF and D0 Run II jet data, we study a number of issues that play a role in determining the up-to-date gluon distribution and its uncertainty, and produce a new set of parton distributions that make use of that data. We present in detail the general procedures used to study the compatibility between new data sets and the previous body of data used in a global fit. We introduce a new method in which the Hessian matrix for uncertainties is ``rediagonalized'' to obtain eigenvector sets that conveniently characterize the uncertainty of a particular observable.Comment: Published versio

    Neutrino Dimuon Production and the Strangeness Asymmetry of the Nucleon

    Get PDF
    We have performed the first global QCD analysis to include the CCFR and NuTeV dimuon data, which provide direct constraints on the strange and anti-strange parton distributions, s(x)s(x) and sˉ(x)\bar{s}(x). To explore the strangeness sector, we adopt a general parametrization of the non-perturbative s(x),sˉ(x)s(x), \bar{s}(x) functions satisfying basic QCD requirements. We find that the strangeness asymmetry, as represented by the momentum integral [S−]≡∫01x[s(x)−sˉ(x)]dx[S^{-}]\equiv \int_0^1 x [s(x)-\bar{s}(x)] dx, is sensitive to the dimuon data provided the theoretical QCD constraints are enforced. We use the Lagrange Multiplier method to probe the quality of the global fit as a function of [S−][S^-] and find −0.001<[S−]<0.004-0.001 < [S^-] < 0.004. Representative parton distribution sets spanning this range are given. Comparisons with previous work are made.Comment: 23 pages, 4 figures; expanded version for publicatio

    Quantum Entanglement of Moving Bodies

    Full text link
    We study the properties of quantum information and quantum entanglement in moving frames. We show that the entanglement between the spins and the momenta of two particles can be interchanged under a Lorentz transformation, so that a pair of particles that is entangled in spin but not momentum in one reference frame, may, in another frame, be entangled in momentum at the expense of spin-entanglement. Similarly, entanglement between momenta may be transferred to spin under a Lorentz transformation. While spin and momentum entanglement each is not Lorentz invariant, the joint entanglement of the wave function is.Comment: 4 pages, 2 figures. An error was corrected in the numerical data and hence the discussion of the data was changed. Also, references were added. Another example was added to the pape

    General Relativistic Simulations of Slowly and Differentially Rotating Magnetized Neutron Stars

    Get PDF
    We present long-term (~10^4 M) axisymmetric simulations of differentially rotating, magnetized neutron stars in the slow-rotation, weak magnetic field limit using a perturbative metric evolution technique. Although this approach yields results comparable to those obtained via nonperturbative (BSSN) evolution techniques, simulations performed with the perturbative metric solver require about 1/4 the computational resources at a given resolution. This computational efficiency enables us to observe and analyze the effects of magnetic braking and the magnetorotational instability (MRI) at very high resolution. Our simulations demonstrate that (1) MRI is not observed unless the fastest-growing mode wavelength is resolved by more than about 10 gridpoints; (2) as resolution is improved, the MRI growth rate converges, but due to the small-scale turbulent nature of MRI, the maximum growth amplitude increases, but does not exhibit convergence, even at the highest resolution; and (3) independent of resolution, magnetic braking drives the star toward uniform rotation as energy is sapped from differential rotation by winding magnetic fields.Comment: 21 pages, 11 figures, published in Phys.Rev.

    Infrared spectroscopy of Landau levels in graphene

    Full text link
    We report infrared studies of the Landau level (LL) transitions in single layer graphene. Our specimens are density tunable and show \textit{in situ} half-integer quantum Hall plateaus. Infrared transmission is measured in magnetic fields up to B=18 T at selected LL fillings. Resonances between hole LLs and electron LLs, as well as resonances between hole and electron LLs are resolved. Their transition energies are proportional to B\sqrt{B} and the deduced band velocity is c~≈1.1×106\tilde{c}\approx1.1\times10^6 m/s. The lack of precise scaling between different LL transitions indicates considerable contributions of many-particle effects to the infrared transition energies.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy

    Full text link
    We report a study of the cyclotron resonance (CR) transitions to and from the unusual n=0n=0 Landau level (LL) in monolayer graphene. Unexpectedly, we find the CR transition energy exhibits large (up to 10%) and non-monotonic shifts as a function of the LL filling factor, with the energy being largest at half-filling of the n=0n=0 level. The magnitude of these shifts, and their magnetic field dependence, suggests that an interaction-enhanced energy gap opens in the n=0n=0 level at high magnetic fields. Such interaction effects normally have limited impact on the CR due to Kohn's theorem [W. Kohn, Phys. Rev. {\bf 123}, 1242 (1961)], which does not apply in graphene as a consequence of the underlying linear band structure.Comment: 4 pages, 4 figures. Version 2, edited for publication. Includes a number of edits for clarity; also added a paragraph contrasting our work w/ previous CR expts. in 2D Si and GaA
    • …
    corecore