6,294 research outputs found
APMEC: An Automated Provisioning Framework for Multi-access Edge Computing
Novel use cases and verticals such as connected cars and human-robot
cooperation in the areas of 5G and Tactile Internet can significantly benefit
from the flexibility and reduced latency provided by Network Function
Virtualization (NFV) and Multi-Access Edge Computing (MEC). Existing frameworks
managing and orchestrating MEC and NFV are either tightly coupled or completely
separated. The former design is inflexible and increases the complexity of one
framework. Whereas, the latter leads to inefficient use of computation
resources because information are not shared. We introduce APMEC, a dedicated
framework for MEC while enabling the collaboration with the management and
orchestration (MANO) frameworks for NFV. The new design allows to reuse
allocated network services, thus maximizing resource utilization. Measurement
results have shown that APMEC can allocate up to 60% more number of network
services. Being developed on top of OpenStack, APMEC is an open source project,
available for collaboration and facilitating further research activities
Collider Inclusive Jet Data and the Gluon Distribution
Inclusive jet production data are important for constraining the gluon
distribution in the global QCD analysis of parton distribution functions. With
the addition of recent CDF and D0 Run II jet data, we study a number of issues
that play a role in determining the up-to-date gluon distribution and its
uncertainty, and produce a new set of parton distributions that make use of
that data. We present in detail the general procedures used to study the
compatibility between new data sets and the previous body of data used in a
global fit. We introduce a new method in which the Hessian matrix for
uncertainties is ``rediagonalized'' to obtain eigenvector sets that
conveniently characterize the uncertainty of a particular observable.Comment: Published versio
Neutrino Dimuon Production and the Strangeness Asymmetry of the Nucleon
We have performed the first global QCD analysis to include the CCFR and NuTeV
dimuon data, which provide direct constraints on the strange and anti-strange
parton distributions, and . To explore the strangeness
sector, we adopt a general parametrization of the non-perturbative functions satisfying basic QCD requirements. We find that the
strangeness asymmetry, as represented by the momentum integral , is sensitive to the dimuon data provided the
theoretical QCD constraints are enforced. We use the Lagrange Multiplier method
to probe the quality of the global fit as a function of and find
. Representative parton distribution sets spanning this
range are given. Comparisons with previous work are made.Comment: 23 pages, 4 figures; expanded version for publicatio
Quantum Entanglement of Moving Bodies
We study the properties of quantum information and quantum entanglement in
moving frames. We show that the entanglement between the spins and the momenta
of two particles can be interchanged under a Lorentz transformation, so that a
pair of particles that is entangled in spin but not momentum in one reference
frame, may, in another frame, be entangled in momentum at the expense of
spin-entanglement. Similarly, entanglement between momenta may be transferred
to spin under a Lorentz transformation. While spin and momentum entanglement
each is not Lorentz invariant, the joint entanglement of the wave function is.Comment: 4 pages, 2 figures. An error was corrected in the numerical data and
hence the discussion of the data was changed. Also, references were added.
Another example was added to the pape
General Relativistic Simulations of Slowly and Differentially Rotating Magnetized Neutron Stars
We present long-term (~10^4 M) axisymmetric simulations of differentially
rotating, magnetized neutron stars in the slow-rotation, weak magnetic field
limit using a perturbative metric evolution technique. Although this approach
yields results comparable to those obtained via nonperturbative (BSSN)
evolution techniques, simulations performed with the perturbative metric solver
require about 1/4 the computational resources at a given resolution. This
computational efficiency enables us to observe and analyze the effects of
magnetic braking and the magnetorotational instability (MRI) at very high
resolution. Our simulations demonstrate that (1) MRI is not observed unless the
fastest-growing mode wavelength is resolved by more than about 10 gridpoints;
(2) as resolution is improved, the MRI growth rate converges, but due to the
small-scale turbulent nature of MRI, the maximum growth amplitude increases,
but does not exhibit convergence, even at the highest resolution; and (3)
independent of resolution, magnetic braking drives the star toward uniform
rotation as energy is sapped from differential rotation by winding magnetic
fields.Comment: 21 pages, 11 figures, published in Phys.Rev.
Infrared spectroscopy of Landau levels in graphene
We report infrared studies of the Landau level (LL) transitions in single
layer graphene. Our specimens are density tunable and show \textit{in situ}
half-integer quantum Hall plateaus. Infrared transmission is measured in
magnetic fields up to B=18 T at selected LL fillings. Resonances between hole
LLs and electron LLs, as well as resonances between hole and electron LLs are
resolved. Their transition energies are proportional to and the
deduced band velocity is m/s. The lack of
precise scaling between different LL transitions indicates considerable
contributions of many-particle effects to the infrared transition energies.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy
We report a study of the cyclotron resonance (CR) transitions to and from the
unusual Landau level (LL) in monolayer graphene. Unexpectedly, we find
the CR transition energy exhibits large (up to 10%) and non-monotonic shifts as
a function of the LL filling factor, with the energy being largest at
half-filling of the level. The magnitude of these shifts, and their
magnetic field dependence, suggests that an interaction-enhanced energy gap
opens in the level at high magnetic fields. Such interaction effects
normally have limited impact on the CR due to Kohn's theorem [W. Kohn, Phys.
Rev. {\bf 123}, 1242 (1961)], which does not apply in graphene as a consequence
of the underlying linear band structure.Comment: 4 pages, 4 figures. Version 2, edited for publication. Includes a
number of edits for clarity; also added a paragraph contrasting our work w/
previous CR expts. in 2D Si and GaA
- …