1,466 research outputs found

    How swelling debts give rise to a new type of politics in Vietnam

    Get PDF
    Vietnam has seen fast-rising debts, both domestic and external, in recent years. This paperreviews the literature on credit market in Vietnam, providing an up-to-date take on the domesticlending and borrowing landscape. The study highlights the strong demand for credit in both therural and urban areas, the ubiquity of informal lenders, the recent popularity of consumer financecompanies, as well as the government’s attempts to rein in its swelling public debt. Given thehigh level of borrowing, which is fueled by consumerism and geopolitics, it is inevitable that theamount of debt will soon be higher than the saving of the borrowers. Unlike the conventional wisdom that creditors have more bargaining power over the borrowers, we suggest that—albeitlacking a quantitative estimation—when the debts pile up so high that the borrowers could not repay, the power dynamics may reverse. In this new politics of debt, the lenders fear to lose the money's worth and continue to lend and feed the insolvent debtors. The result is a toxic lending/borrowing market and profound lessons, from which the developing world could learn

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres

    Efficient methane dry reforming process with low nickel loading for greenhouse gas mitigation

    Get PDF
    In this study, a series of nickels supported on gamma alumina with a metal dosage ranging from 0.5 to 3 wt.% were prepared and employed as the catalysts. The effect of nickel dosage on material properties, reaction performance, and catalyst deactivation was investigated. At a low dosage, the nickel-free having low metal-support interaction contributed significantly to the total active site. The basicity of the material was enhanced along with the increase in nickel loading. The presence of active metal showed a great impact at the beginning leading to big improvements in feedstock conversion. However, beyond a nickel dosage of 2 wt.%, further additions did not noticeably influence the reaction performance. Regarding catalyst deactivation, different carbon species were observed on catalyst surface, depending on the nickel dosage. Catalysts with less than 2 wt.% nickel exhibited amorphous carbon as the dominant morphology on the spent catalyst. In contrast, catalysts with 2Ni/Al2O3 and 3Ni/Al2O3 compositions showed graphitic carbon as the main side product. These findings provide insights into the relationship between nickel dosage, catalyst properties, and catalytic performance in methane dry reforming. By understanding the effects of nickel loading on material properties and reaction behavior, researchers can optimize catalyst design and develop more efficient and stable catalysts for sustainable syngas production

    One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage

    Get PDF
    Graphene-decorated V2O5 nanobelts (GVNBs) were synthesized via a low-temperature hydrothermal method in a single step. V2O5 nanobelts (VNBs) were formed in the presence of graphene oxide, a mild oxidant, which also enhanced the conductivity of GVNBs. From the electron energy loss spectroscopy analysis, the reduced graphene oxide (rGO) are inserted into the layered crystal structure of V2O5 nanobelts, which further confirmed the enhanced conductivity of the nanobelts. The electrochemical energy-storage capacity of GVNBs was investigated for supercapacitor applications. The specific capacitance of GVNBs was evaluated using cyclic voltammetry (CV) and charge/discharge (CD) studies. The GVNBs having V2O5-rich composite, namely, V(3)G(1) (VO/GO = 3:1), showed superior specific capacitance in comparison to the other composites (V(1)G(1) and V(1)G(3)) and the pure materials. Moreover, the V(3)G(1) composite showed excellent cyclic stability and the capacitance retention of about 82% was observed even after 5000 cycles.open

    Carbon dioxide reforming of methane over modified iron-cobalt alumina catalyst : Role of promoter

    Get PDF
    Cobalt-based catalysts are widely employed in methane dry reforming but tend to deactivate quickly due to coke deposits and metal sintering. To enhance the performance, iron, a cost-effective promoter, is added, improving cobalt's metal dispersibility, reducibility, and basicity on the support. This addition accelerates carbon gasification, effectively inhibiting coke deposition. Methods: A series of iron-doped cobalt alumina MFe-5Co/Al2O3 (M= 0, 0.4, 0.8, 1, 2 wt.%) were prepared via simple incipient-wetness impregnation. The catalysts were thoroughly characterized via modern techniques including BET, XRD, H2-TPR, CO2-TPD. Significant findings: The addition of iron had a minimal impact on the properties of γ-Al2O3, but it significantly affected the dispersibility of cobalt. At an optimal dosage of 0.8 wt.%, there was a notable decrease of 29.44% in Co3O4 particle size. However, excessive iron loading induced agglomeration of Co3O4, which was reversible. The presence of iron also resulted in a decrease in the reduction temperature of Co3O4. The material's basicity was primarily influenced by the loading of iron, reaching its highest value of 705.7 μmol CO2 g−1 in the 2Fe-5Co/Al2O3. The correlation between catalytic activity and the physicochemical properties of the material was established. The 0.8Fe-5Co/Al2O3 sample exhibited excellent performance due to the favorable dispersibility of cobalt, its reducibility, and its affordable basicity

    Host Transcription Profile in Nasal Epithelium and Whole Blood of Hospitalized Children Under 2 Years of Age With Respiratory Syncytial Virus Infection.

    Get PDF
    BACKGROUND: Most insights into the cascade of immune events after acute respiratory syncytial virus (RSV) infection have been obtained from animal experiments or in vitro models. METHODS: In this study, we investigated host gene expression profiles in nasopharyngeal (NP) swabs and whole blood samples during natural RSV and rhinovirus (hRV) infection (acute versus early recovery phase) in 83 hospitalized patients <2 years old with lower respiratory tract infections. RESULTS: Respiratory syncytial virus infection induced strong and persistent innate immune responses including interferon signaling and pathways related to chemokine/cytokine signaling in both compartments. Interferon-α/β, NOTCH1 signaling pathways and potential biomarkers HIST1H4E, IL7R, ISG15 in NP samples, or BCL6, HIST2H2AC, CCNA1 in blood are leading pathways and hub genes that were associated with both RSV load and severity. The observed RSV-induced gene expression patterns did not differ significantly in NP swab and blood specimens. In contrast, hRV infection did not as strongly induce expression of innate immunity pathways, and significant differences were observed between NP swab and blood specimens. CONCLUSIONS: We conclude that RSV induced strong and persistent innate immune responses and that RSV severity may be related to development of T follicular helper cells and antiviral inflammatory sequelae derived from high activation of BCL6

    Search for the standard model Higgs boson at LEP

    Get PDF
    corecore