6,938 research outputs found

    Observation of Vortex Pinning in Bose-Einstein Condensates

    Get PDF
    We report the observation of vortex pinning in rotating gaseous Bose-Einstein condensates (BEC). The vortices are pinned to columnar pinning sites created by a co-rotating optical lattice superimposed on the rotating BEC. We study the effects of two different types of optical lattice, triangular and square. With both geometries we see an orientation locking between the vortex and the optical lattices. At sufficient intensity the square optical lattice induces a structural cross-over in the vortex lattice.Comment: 4 pages, 6 figures. Replaced by final version to appear in Phys. Rev. Let

    Experimental studies of equilibrium vortex properties in a Bose-condensed gas

    Get PDF
    We characterize several equilibrium vortex effects in a rotating Bose-Einstein condensate. Specifically we attempt precision measurements of vortex lattice spacing and the vortex core size over a range of condensate densities and rotation rates. These measurements are supplemented by numerical simulations, and both experimental and numerical data are compared to theory predictions of Sheehy and Radzihovsky [17] (cond-mat/0402637) and Baym and Pethick [25] (cond-mat/0308325). Finally, we study the effect of the centrifugal weakening of the trapping spring constants on the critical temperature for quantum degeneracy and the effects of finite temperature on vortex contrast.Comment: Fixed minor notational inconsistencies in figures. 12 pages, 8 figure

    Topological String Partition Functions as Polynomials

    Full text link
    We investigate the structure of the higher genus topological string amplitudes on the quintic hypersurface. It is shown that the partition functions of the higher genus than one can be expressed as polynomials of five generators. We also compute the explicit polynomial forms of the partition functions for genus 2, 3, and 4. Moreover, some coefficients are written down for all genus.Comment: 22 pages, 6 figures. v2:typos correcte

    Positivity of Quasilocal Mass

    Full text link
    Motivated by the important work of Brown adn York on quasilocal energy, we propose definitions of quasilocal energy and momentum surface energy of a spacelike 2-surface with positive intrinsic curvature in a spacetime. We show that the quasilocal energy of the boundary of a compact spacelike hypersurface which satisfies the local energy condition is strictly positive unless the spacetime is flat along the spacelike hypersurface.Comment: 4 pages; final published versio

    Observation of the Presuperfluid Regime in a Two-Dimensional Bose Gas

    Get PDF
    In complementary images of coordinate-space and momentum-space density in a trapped 2D Bose gas, we observe the emergence of pre-superfluid behavior. As phase-space density ρ\rho increases toward degenerate values, we observe a gradual divergence of the compressibility κ\kappa from the value predicted by a bare-atom model, κba\kappa_{ba}. κ/κba\kappa/\kappa_{ba} grows to 1.7 before ρ\rho reaches the value for which we observe the sudden emergence of a spike at p=0p=0 in momentum space. Momentum-space images are acquired by means of a 2D focusing technique. Our data represent the first observation of non-meanfield physics in the pre-superfluid but degenerate 2D Bose gas.Comment: Replace with the version appeared in PR

    Efficient nonlinear room-temperature spin injection from ferromagnets into semiconductors through a modified Schottky barrier

    Full text link
    We suggest a consistent microscopic theory of spin injection from a ferromagnet (FM) into a semiconductor (S). It describes tunneling and emission of electrons through modified FM-S Schottky barrier with an ultrathin heavily doped interfacial S layer . We calculate nonlinear spin-selective properties of such a reverse-biased FM-S junction, its nonlinear I-V characteristic, current saturation, and spin accumulation in S. We show that the spin polarization of current, spin density, and penetration length increase with the total current until saturation. We find conditions for most efficient spin injection, which are opposite to the results of previous works, since the present theory suggests using a lightly doped resistive semiconductor. It is shown that the maximal spin polarizations of current and electrons (spin accumulation) can approach 100% at room temperatures and low current density in a nondegenerate high-resistance semiconductor.Comment: 7 pages, 2 figures; provides detailed comparison with earlier works on spin injectio

    Predictors of Comorbid Eating Disorders and Association with Other Obsessive-Compulsive Spectrum Disorders in Trichotillomania

    Get PDF
    Trichotillomania (TTM) and eating disorders (ED) share many phenomenological similarities, including ritualized compulsive behaviors. Given this, and that comorbid EDs may represent additional functional burden to hair pullers, we sought to identify factors that predict diagnosis of an ED in a TTM population. Subjects included 555 adult females (age range 18–65) with DSM-IV-TR TTM or chronic hair pullers recruited from multiple sites. 7.2% (N = 40) of our TTM subjects met criteria for an ED in their lifetime. In univariable regression analysis, obsessive-compulsive disorder (OCD), Yale-Brown Obsessive Compulsive Scale (Y-BOCS) worst-ever compulsion and total scores, certain obsessive-compulsive spectrum disorders, anxiety disorder, attention-deficit/hyperactivity disorder (ADHD), and substance disorder all met the pre-specified criteria for inclusion in the multivariable analysis. In the final multivariable model, diagnosis of OCD (OR: 5.68, 95% CI: 2.2–15.0) and diagnosis of an additional body-focused repetitive behavior disorder (BFRB) (OR: 2.69, 95% CI: 1.1–6.8) were both associated with increased risk of ED in TTM. Overall, our results provide further support of the relatedness between ED and TTM. This finding highlights the importance of assessing for comorbid OCD and additional BFRBs in those with TTM. Future research is needed to identify additional predictors of comorbid disorders and to better understand the complex relationships between BFRBs, OCD and EDs

    Heavy Quark Production and PDF's Subgroup Report

    Get PDF
    We present a status report of a variety of projects related to heavy quark production and parton distributions for the Tevatron Run II.Comment: Latex. 8 pages, 7 eps figures. Contribution to the Physics at Run II Workshops: QCD and Weak Boson Physic

    Mechanism of Hydrolysis of Octacalcium Phosphate

    Get PDF
    The chemical and structural properties of hydrolyzed octacalcium phosphate (OCP) appear to be of high relevance to tooth, bone and pathological bioapatites. Hydrolysis of synthetic well-crystallized OCP was studied at constant pH by using the pH stat method over the 6.1 to 8.6 range at 50°C and to a lesser extent at 37°C. Hydrolytic transformation proceeds according to thermodynamic requirements except for some retardation at the highest pH value as a consequence of decreased solubility of OCP which may be rate determining. The product of hydrolysis, OCP-hydrolyzate (OCPH), was characterized by chemical analysis, scanning electron microscopy, x-ray diffraction, electron microprobe (x-ray microanalysis, EDX) and solubility measurements under static and dynamic conditions. Even after prolonged hydrolysis at 50°C, the resulting product was a calcium deficient apatite with chemical composition and thermodynamic solubility properties differing from those of well-crystallized hydroxyapatite. Our overall findings provide new evidence that OCP may be a precursor phase in the formation of pathologic calcified deposits and normal biomineral, which appear to be complex hydrolyzates of OCP

    Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy

    Full text link
    We report a study of the cyclotron resonance (CR) transitions to and from the unusual n=0n=0 Landau level (LL) in monolayer graphene. Unexpectedly, we find the CR transition energy exhibits large (up to 10%) and non-monotonic shifts as a function of the LL filling factor, with the energy being largest at half-filling of the n=0n=0 level. The magnitude of these shifts, and their magnetic field dependence, suggests that an interaction-enhanced energy gap opens in the n=0n=0 level at high magnetic fields. Such interaction effects normally have limited impact on the CR due to Kohn's theorem [W. Kohn, Phys. Rev. {\bf 123}, 1242 (1961)], which does not apply in graphene as a consequence of the underlying linear band structure.Comment: 4 pages, 4 figures. Version 2, edited for publication. Includes a number of edits for clarity; also added a paragraph contrasting our work w/ previous CR expts. in 2D Si and GaA
    corecore