304 research outputs found
Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia
Myopia, or nearsightedness, is the most common eye disorder, resulting
primarily from excess elongation of the eye. The etiology of myopia, although
known to be complex, is poorly understood. Here we report the largest ever
genome-wide association study (43,360 participants) on myopia in Europeans. We
performed a survival analysis on age of myopia onset and identified 19
significant associations (p < 5e-8), two of which are replications of earlier
associations with refractive error. These 19 associations in total explain 2.7%
of the variance in myopia age of onset, and point towards a number of different
mechanisms behind the development of myopia. One association is in the gene
PRSS56, which has previously been linked to abnormally small eyes; one is in a
gene that forms part of the extracellular matrix (LAMA2); two are in or near
genes involved in the regeneration of 11-cis-retinal (RGR and RDH5); two are
near genes known to be involved in the growth and guidance of retinal ganglion
cells (ZIC2, SFRP1); and five are in or near genes involved in neuronal
signaling or development. These novel findings point towards multiple genetic
factors involved in the development of myopia and suggest that complex
interactions between extracellular matrix remodeling, neuronal development, and
visual signals from the retina may underlie the development of myopia in
humans
Gamete Donor Selection Based on Genetic Calculations. U.S. Patent 8,543,339
Gamete donor selection includes receiving a specification including a phenotype of interest, receiving a genotype of a recipient and a plurality of genotypes of a respective plurality of donors, determining statistical information pertaining to the phenotype of interest based at least in part on different pairings of the genotype of the recipient and a genotype of a donor in the plurality of donors, and identifying a preferred donor among the plurality of donors, based at least in part on the statistical information determined
Dazl Functions in Maintenance of Pluripotency and Genetic and Epigenetic Programs of Differentiation in Mouse Primordial Germ Cells In Vivo and In Vitro
Mammalian germ cells progress through a unique developmental program that encompasses proliferation and migration of the nascent primordial germ cell (PGC) population, reprogramming of nuclear DNA to reset imprinted gene expression, and differentiation of mature gametes. Little is known of the genes that regulate quantitative and qualitative aspects of early mammalian germ cell development both in vivo, and during differentiation of germ cells from mouse embryonic stem cells (mESCs) in vitro.We used a transgenic mouse system that enabled isolation of small numbers of Oct4DeltaPE:GFP-positive germ cells in vivo, and following differentiation from mESCs in vitro, to uncover quantitate and qualitative phenotypes associated with the disruption of a single translational regulator, Dazl. We demonstrate that disruption of Dazl results in a post-migratory, pre-meiotic reduction in PGC number accompanied by aberrant expression of pluripotency genes and failure to erase and re-establish genomic imprints in isolated male and female PGCs, as well as subsequent defect in progression through meiosis. Moreover, the phenotypes observed in vivo were mirrored by those in vitro, with inability of isolated mutant PGCs to establish pluripotent EG (embryonic germ) cell lines and few residual Oct-4-expressing cells remaining after somatic differentiation of mESCs carrying a Dazl null mutation. Finally, we observed that even within undifferentiated mESCs, a nascent germ cell subpopulation exists that was effectively eliminated with ablation of Dazl.This report establishes the translational regulator Dazl as a component of pluripotency, genetic, and epigenetic programs at multiple time points of germ cell development in vivo and in vitro, and validates use of the ESC system to model and explore germ cell biology
Generalized mirror symmetry and trace anomalies
We consider compactification of M-theory on X7 with betti numbers (b_0, b_1,
b_2, b_3, b_3, b_2, b_1, b_0) and define a generalized mirror symmetry (b_0,
b_1, b_2, b_3) goes to (b_0, b_1, b_2 -rho/2, b_3+rho/2)$ under which rho =
7b_0-5b_1+3b_2 -b_3 changes sign. Generalized self-mirror theories with rho=0
have massless sectors with vanishing trace anomaly (before dualization).
Examples include pure supergravity with N \geq 4 and supergravity plus matter
with N \leq 4.Comment: 19 pages late
Assessment of the genetic basis of rosacea by genome-wide association study.
Rosacea is a common, chronic skin disease that is currently incurable. Although environmental factors influence rosacea, the genetic basis of rosacea is not established. In this genome-wide association study, a discovery group of 22,952 individuals (2,618 rosacea cases and 20,334 controls) was analyzed, leading to identification of two significant single-nucleotide polymorphisms (SNPs) associated with rosacea, one of which replicated in a new group of 29,481 individuals (3,205 rosacea cases and 26,262 controls). The confirmed SNP, rs763035 (P=8.0 × 10(-11) discovery group; P=0.00031 replication group), is intergenic between HLA-DRA and BTNL2. Exploratory immunohistochemical analysis of HLA-DRA and BTNL2 expression in papulopustular rosacea lesions from six individuals, including one with the rs763035 variant, revealed staining in the perifollicular inflammatory infiltrate of rosacea for both proteins. In addition, three HLA alleles, all MHC class II proteins, were significantly associated with rosacea in the discovery group and confirmed in the replication group: HLA-DRB1*03:01 (P=1.0 × 10(-8) discovery group; P=4.4 × 10(-6) replication group), HLA-DQB1*02:01 (P=1.3 × 10(-8) discovery group; P=7.2 × 10(-6) replication group), and HLA-DQA1*05:01 (P=1.4 × 10(-8) discovery group; P=7.6 × 10(-6) replication group). Collectively, the gene variants identified in this study support the concept of a genetic component for rosacea, and provide candidate targets for future studies to better understand and treat rosacea
Efficient Replication of Over 180 Genetic Associations with Self-Reported Medical Data
While the cost and speed of generating genomic data have come down dramatically in recent years, the slow pace of collecting medical data for large cohorts continues to hamper genetic research. Here we evaluate a novel online framework for amassing large amounts of medical information in a recontactable cohort by assessing our ability to replicate genetic associations using these data. Using web-based questionnaires, we gathered self-reported data on 50 medical phenotypes from a generally unselected cohort of over 20,000 genotyped individuals. Of a list of genetic associations curated by NHGRI, we successfully replicated about 75% of the associations that we expected to (based on the number of cases in our cohort and reported odds ratios, and excluding a set of associations with contradictory published evidence). Altogether we replicated over 180 previously reported associations, including many for type 2 diabetes, prostate cancer, cholesterol levels, and multiple sclerosis. We found significant variation across categories of conditions in the percentage of expected associations that we were able to replicate, which may reflect systematic inflation of the effects in some initial reports, or differences across diseases in the likelihood of misdiagnosis or misreport. We also demonstrated that we could improve replication success by taking advantage of our recontactable cohort, offering more in-depth questions to refine self-reported diagnoses. Our data suggests that online collection of self-reported data in a recontactable cohort may be a viable method for both broad and deep phenotyping in large populations
Novel missense mutations of the Deleted-in-AZoospermia-Like (DAZL) gene in infertile women and men
BACKGROUND: The Deleted-in-AZoospermia-Like (DAZL) gene has homologs required for germ cell development in many organisms. Recently, we showed that there are several common polymorphisms within the DAZL gene that are associated with age at ovarian failure/menopause and sperm count. METHODS: Here we sought to identify rare mutations in DAZL and examine their phenotypes in men and women. We sequenced the DAZL gene in 519 individuals; sequences spanned the entire coding region of the gene. RESULTS: We report the identification of four putative missense mutations in DAZL. Three individuals that were heterozygous for a DAZL mutation reported having children, while two individuals that were homozygous reported no children. These mutations were found only in infertile men and women. CONCLUSION: Given the strong data associating DAZL polymorphisms and deletions with fertility in humans and model organisms, we suggest that these mutations may be associated with age at menopause and/or sperm count and warrant further biochemical and genetic investigation
Web-Based Genome-Wide Association Study Identifies Two Novel Loci and a Substantial Genetic Component for Parkinson's Disease
Although the causes of Parkinson's disease (PD) are thought to be primarily environmental, recent studies suggest that a number of genes influence susceptibility. Using targeted case recruitment and online survey instruments, we conducted the largest case-control genome-wide association study (GWAS) of PD based on a single collection of individuals to date (3,426 cases and 29,624 controls). We discovered two novel, genome-wide significant associations with PD–rs6812193 near SCARB2 (, ) and rs11868035 near SREBF1/RAI1 (, )—both replicated in an independent cohort. We also replicated 20 previously discovered genetic associations (including LRRK2, GBA, SNCA, MAPT, GAK, and the HLA region), providing support for our novel study design. Relying on a recently proposed method based on genome-wide sharing estimates between distantly related individuals, we estimated the heritability of PD to be at least 0.27. Finally, using sparse regression techniques, we constructed predictive models that account for 6%–7% of the total variance in liability and that suggest the presence of true associations just beyond genome-wide significance, as confirmed through both internal and external cross-validation. These results indicate a substantial, but by no means total, contribution of genetics underlying susceptibility to both early-onset and late-onset PD, suggesting that, despite the novel associations discovered here and elsewhere, the majority of the genetic component for Parkinson's disease remains to be discovered
Shared genetic aetiology of puberty timing between sexes and with health-related outcomes.
Understanding of the genetic regulation of puberty timing has come largely from studies of rare disorders and population-based studies in women. Here, we report the largest genomic analysis for puberty timing in 55,871 men, based on recalled age at voice breaking. Analysis across all genomic variants reveals strong genetic correlation (0.74, P=2.7 × 10(-70)) between male and female puberty timing. However, some loci show sex-divergent effects, including directionally opposite effects between sexes at the SIM1/MCHR2 locus (Pheterogeneity=1.6 × 10(-12)). We find five novel loci for puberty timing (P<5 × 10(-8)), in addition to nine signals in men that were previously reported in women. Newly implicated genes include two retinoic acid-related receptors, RORB and RXRA, and two genes reportedly disrupted in rare disorders of puberty, LEPR and KAL1. Finally, we identify genetic correlations that indicate shared aetiologies in both sexes between puberty timing and body mass index, fasting insulin levels, lipid levels, type 2 diabetes and cardiovascular disease.This work was supported by the Medical Research Council [U106179472; MC_U106179472; U106179471; MC_U106179471] and the National Human Genome Research Institute of the National Institutes of Health (grant number R44HG006981 to 23andMe)This is the final version of the article. It was first available from NPG via http://dx.doi.org/10.1038/ncomms984
- …