22 research outputs found

    Influence of Oil Status on Membrane-Based Gas–Oil Separation in DGA

    No full text
    Gas–oil separation by membrane stands for a promising technique in dissolved gas analysis (DGA). Since the accuracy of DGA relies on the results of gas–oil separation to a great extent, it is necessary to study the influence factor of membrane for better performance. Although plentiful studies have been conducted aiming at membrane modification to obtain better separation performance, it cannot be ignored that the conditions of oil also affect the performance of membrane much. In this work, a photoacoustic spectroscopy-based sensor for DGA, which employed membrane for gas–oil separation, was established first. By detecting the photoacoustic signal, the performance of membrane could be evaluated. Furthermore, the influences of feed velocity and pressure have on the performance of membrane were analyzed. Both simulation and experiment were employed in this work to evaluate the influences by collecting the equilibrium time of membrane under different conditions. As a result, the simulation and experiment agreed with each other well. Moreover, it was reasonable to draw the conclusion that the equilibrium time was evidently reduced with the raise of feed velocity but remained with a minimum change when pressure changed. The conclusion may serve as a reference for the application of membrane in optical sensor and DGA

    Application of Excimer Lamp in Quantitative Detection of SF6 Decomposition Component SO2

    No full text
    Accurate quantitative detection for trace gas has long been the center of failure diagnosis for gas-insulated equipment. An absorption spectroscopy-based detection system was developed for trace SF6 decomposition SO2 detection in this paper. In order to reduce interference from other decomposition, ultraviolet spectrum of SO2 was selected for detection. Firstly, an excimer lamp was developed in this paper as the excitation of the absorption spectroscopy compared with regular light sources with electrodes, such as electrodeless lamps that are more suitable for long-term monitoring. Then, based on the developed excimer lamp, a detection system for trace SO2 was established. Next, a proper absorption peak was selected by calculating spectral derivative for further analysis. Experimental results indicated that good linearity existed between the absorbance and concentration of SO2 at the chosen absorption peak. Moreover, the detection limit of the proposed detection system could reach the level of 10−7. The results of this paper could serve as a guide for the application of excimer lamp in online monitoring for SF6-insulated equipment

    Influence of Oil Status on Membrane-Based Gas–Oil Separation in DGA

    No full text
    Gas–oil separation by membrane stands for a promising technique in dissolved gas analysis (DGA). Since the accuracy of DGA relies on the results of gas–oil separation to a great extent, it is necessary to study the influence factor of membrane for better performance. Although plentiful studies have been conducted aiming at membrane modification to obtain better separation performance, it cannot be ignored that the conditions of oil also affect the performance of membrane much. In this work, a photoacoustic spectroscopy-based sensor for DGA, which employed membrane for gas–oil separation, was established first. By detecting the photoacoustic signal, the performance of membrane could be evaluated. Furthermore, the influences of feed velocity and pressure have on the performance of membrane were analyzed. Both simulation and experiment were employed in this work to evaluate the influences by collecting the equilibrium time of membrane under different conditions. As a result, the simulation and experiment agreed with each other well. Moreover, it was reasonable to draw the conclusion that the equilibrium time was evidently reduced with the raise of feed velocity but remained with a minimum change when pressure changed. The conclusion may serve as a reference for the application of membrane in optical sensor and DGA

    In Situ Photoacoustic Detection System for SO2 in High-Pressure SF6 Buffer Gas Using UV LED

    No full text
    Sulfur dioxide (SO2) is a key indicator for fault diagnosis in sulfur hexafluoride (SF6) gas-insulated equipment. In this work, an in situ photoacoustic detection system using an ultraviolet (UV) LED light as the excitation source was established to detect SO2 in high-pressure SF6 buffer gas. The selection of the SO2 absorption band is discussed in detail in the UV spectral regions. Based on the result of the spectrum selection, a UV LED with a nominal wavelength of 285 nm and a bandwidth of 13 nm was selected. A photoacoustic cell, as well as a high-pressure sealed gas vessel containing it, were designed to match the output optical beam and to generate a PA signal in the high-pressure SF6 buffer gas. The performance of the proposed system was assessed in terms of linearity and detection limit. An SO2 detection limit (1σ) of 0.17 ppm was achieved. Additionally, a correction method was supplied to solve PA signal derivation induced by pressure fluctuation. The method can reduce the derivation from about 5% to 1% in the confirmation experiment

    Superoxide mediates direct current electric field-induced directional migration of glioma cells through the activation of AKT and ERK.

    Get PDF
    Direct current electric fields (DCEFs) can induce directional migration for many cell types through activation of intracellular signaling pathways. However, the mechanisms that bridge extracellular electrical stimulation with intracellular signaling remain largely unknown. In the current study, we found that a DCEF can induce the directional migration of U87, C6 and U251 glioma cells to the cathode and stimulate the production of hydrogen peroxide and superoxide. Subsequent studies demonstrated that the electrotaxis of glioma cells were abolished by the superoxide inhibitor N-acetyl-l-cysteine (NAC) or overexpression of mitochondrial superoxide dismutase (MnSOD), but was not affected by inhibition of hydrogen peroxide through the overexpression of catalase. Furthermore, we found that the presence of NAC, as well as the overexpression of MnSOD, could almost completely abolish the activation of Akt, extracellular-signal-regulated kinase (Erk)1/2, c-Jun N-terminal kinase (JNK), and p38, although only JNK and p38 were affected by overexpression of catalase. The presenting of specific inhibitors can decrease the activation of Erk1/2 or Akt as well as the directional migration of glioma cells. Collectively, our data demonstrate that superoxide may play a critical role in DCEF-induced directional migration of glioma cells through the regulation of Akt and Erk1/2 activation. This study provides novel evidence that the superoxide is at least one of the "bridges" coupling the extracellular electric stimulation to the intracellular signals during DCEF-mediated cell directional migration

    Application of Excimer Lamp in Quantitative Detection of SF<sub>6</sub> Decomposition Component SO<sub>2</sub>

    No full text
    Accurate quantitative detection for trace gas has long been the center of failure diagnosis for gas-insulated equipment. An absorption spectroscopy-based detection system was developed for trace SF6 decomposition SO2 detection in this paper. In order to reduce interference from other decomposition, ultraviolet spectrum of SO2 was selected for detection. Firstly, an excimer lamp was developed in this paper as the excitation of the absorption spectroscopy compared with regular light sources with electrodes, such as electrodeless lamps that are more suitable for long-term monitoring. Then, based on the developed excimer lamp, a detection system for trace SO2 was established. Next, a proper absorption peak was selected by calculating spectral derivative for further analysis. Experimental results indicated that good linearity existed between the absorbance and concentration of SO2 at the chosen absorption peak. Moreover, the detection limit of the proposed detection system could reach the level of 10−7. The results of this paper could serve as a guide for the application of excimer lamp in online monitoring for SF6-insulated equipment

    Citric Acid-Based Intrinsic Band-Shifting Photoluminescent Materials

    No full text
    Citric acid, an important metabolite with abundant reactive groups, has been demonstrated as a promising starting material to synthesize diverse photoluminescent materials including small molecules, polymers, and carbon dots. The unique citrate chemistry enables the development of a series of citric acid-based molecules and nanomaterials with intriguing intrinsic band-shifting behavior, where the emission wavelength shifts as the excitation wavelength increases, ideal for chromatic imaging and many other applications. In this review, we discuss the concept of “intrinsic band-shifting photoluminescent materials”, introduce the recent advances in citric acid-based intrinsic band-shifting materials, and discuss their potential applications such as chromatic imaging and multimodal sensing. It is our hope that the insightful and forward-thinking discussion in this review will spur the innovation and applications of the unique band-shifting photoluminescent materials

    DCEF-mediated induction of directional migration of glioma cells.

    No full text
    <p>In the absence of DCEF, Astrocytes (A), U87 glioma cells (B), C6 glioma cells (C) and U251 glioma cells (D) migrated with equal probability in all directions. The DCEF in a 200 mV/mm could not direct the migration of the astrocyte (Aâ€Č). Glioma cells migrated toward the cathode in a 200 mV/mm DCEF after two hours of exposure (Bâ€Č–Dâ€Č). An analysis of direction (cosΞ) and speed (”m/h) of glioma cells migration (E and F). *<i>P</i><0.05.</p

    Superoxide-mediated electrotaxis depends on the activation of Akt and Erk1/2.

    No full text
    <p>DCEF would induce the phosphorylation of Erk1/2 and Akt, and the activation of Erk1/2 or Akt were reduced by 20 ”M PD98059 (inhibitor of Erk) or 20 ”M LY294002 (inhibitor of Akt) respectively (A). DCEF-induced directional migration of U87 cells was also significantly decreased by PD98059 (B) or LY294002 (C). Bar = 25 ”m.</p
    corecore