11 research outputs found

    Increased incidence of aflatoxin B1-induced liver tumors in hepatitis virus C transgenic mice

    Get PDF
    Viral hepatitis and aflatoxin B1 (AFB1) exposure are common risk factors for hepatocellular carcinoma (HCC). The incidence of HCC in individuals co-exposed to hepatitis C (HCV) or B virus and AFB1 is greater than could be explained by the additive effect, yet the mechanisms are poorly understood due to lack of an animal model. This study investigated the outcomes and mechanisms of combined exposure to HCV and AFB1. We hypothesized that HCV transgenic (HCV-Tg; expressing core, E1, E2, and p7, nucleotides 342–2771) mice will be prone to hepatocarcinogenesis when exposed to AFB1. Neonatal (7 days old) HCV-Tg or C57BL/6J wild-type mice were exposed to AFB1 (6 μg/g bw) or tricaprylin vehicle (15 μl/g bw) and male offspring were followed for up to 12 months. No liver lesions were observed in vehicle-treated wild type or HCV-Tg mice. Tumors (adenomas or carcinomas) and preneoplastic lesions (hyperplasia or foci) were observed in 22.5% (9 of 40) of AFB1-treated wild-type mice. In HCV-Tg, the incidence of tumorous or pre-tumorous lesions was significantly elevated (50%, 18 of 36), with the difference largely due to a 2.5-fold increase in the incidence of adenomas (30.5% vs 12.5%). While oxidative stress and steato-hepatisis were observed in both AFB1-treated groups, molecular changes indicative of the enhanced inflammatory response and altered lipid metabolism were more pronounced in HCV-Tg mice. In summary, HCV proteins core, E1, E2 and p7 are sufficient to reproduce the co-carcinogenic effect of HCV and AFB1 which is a known clinical phenomenon

    TREM2-induced activation of microglia contributes to synaptic integrity in cognitively intact aged individuals with Alzheimer's neuropathology

    No full text
    The existence of individuals who remain cognitively intact despite presenting histopathological signs of Alzheimer's disease (AD), here referred to as "Nondemented with AD neuropathology" (NDAN), suggests that some mechanisms are triggered to resist cognitive impairment. Exposed phosphatidylserine (ePS) represents a neuronal "eat-me" signal involved in microglial-mediated phagocytosis of damaged synapses. A possible mediator of this process is TREM2, a microglial surface receptor activated by ligands including PS. Based on TREM2 role in the scavenging function of microglia, we hypothesize that an efficient microglial phagocytosis of damaged synapses underlies synaptic resilience in NDAN, thus protecting from memory deficits. Using immunofluorescence microscopy, we performed a comparative study of human post-mortem frontal cortices of aged-matched, AD and NDAN individuals. We studied the distribution of activated microglia (IBA1, IBA1(+)/CD68(+) cells) and phagocytic microglia-related proteins (TREM2, DAP12), demonstrating higher microglial activation and TREM2 expression in NDAN versus AD. A study of the preservation of synapses around plaques, assessed using MAP2 and beta III tubulin as dendritic and axonal markers, respectively, and PSD95 as a postsynaptic marker, revealed preserved axonal/dendritic structure around plaques in NDAN versus AD. Moreover, high levels of PSD95 around NDAN plaques and the colocalization of PSD95 with CD68 indicated a prompt removal of damaged synapses by phagocytic microglia. Furthermore, Annexin V assay on aged-matched, AD and NDAN individuals synaptosomes revealed increased levels of ePS in NDAN, confirming damaged synapses engulfment. Our results suggest a higher efficiency of TREM2-induced phagocytic microglia in removing damaged synapses, underlying synaptic resilience in NDAN individuals

    Parenchymal Expression of CD86/B7.2 Contributes to Hepatitis C Virus-Related Liver Injury

    No full text
    Hepatitis C virus (HCV) infection is a major global health problem. Hepatic expression of immune costimulatory signaling molecules (e.g., B7) is known to be associated with ongoing liver injury in hepatitis C patients. However, due to the general lack of viral culture systems and adequate animal models, the function of these molecules in disease pathogenesis is poorly understood. To investigate the role of CD86 in HCV-related liver injury, we developed two transgenic mouse lineages with inducible expression of HCV structural proteins and constitutive expression of the costimulatory molecule CD86/B7.2 in the liver. Using a hydrodynamic-based, nonviral delivery protocol, we induced HCV transgene expression in the livers of HCV and CD86 single- and double-transgenic mice. We found that hepatic CD86 expression resulted in increased activation of and cytokine production (e.g., interleukin-2 and gamma interferon) by CD4(+) T cells and that the retention of these cells was associated with more pronounced necroinflammatory lesions in the liver. Taken together, these data suggest that augmented, parenchymal antigen presentation conferred by hepatocyte CD86 expression alters homeostasis and effector functions of CD4(+) T cells and contributes to liver injury. This study provides an additional rationale for exploring immunomodulation-based therapies that could reduce disease progression in individuals with chronic HCV infection
    corecore