14 research outputs found

    Exploring the uncertainty in capacity estimation at roundabouts

    Get PDF
    Purpose In gap-acceptance theory the critical and the follow up headways have a significant role in determining roundabout entry capacities which in turn depend on circulating flow rates under a specified arrival headway distribution. Calculation considers single mean values of the gap-acceptance parameters, neglecting the inherent variations in these random variables and providing a single value of entry capacity. The purpose of this paper is to derive the entry capacity distribution which accounts for the variations of the contributing (random) variables and suggest how to consider this issue in the operational analysis of the roundabouts. Methods We performed a Monte Carlo simulation to get the distribution of entry capacity and found Crystal Ball software effective for performing the random sampling from the probability density functions of each contributing parameter. A steady-state model of capacity was used for performing many runs; in each run, the values of each contributing parameter were randomly drawn from the corresponding distributions. Results The paper presents the first simulations and the entry capacity distributions at roundabouts, once the probability distributions of the headways were assumed. The results of the analysis were expressed probabilistically, meaning that the probability distributions of capacity rather than the simple point estimates were obtained. Conclusions Comparing the capacity values based on a meta analytic estimation of critical and follow-up headways and the capacity functions based on the probability distributions of the model parameters, more insights in developing an appropriate approach to capacity estimation at roundabouts can be gained

    A Methodological Framework to Assess Road Infrastructure Safety and Performance Efficiency in the Transition toward Cooperative Driving

    Get PDF
    There is increasing interest in connected and automated vehicles (CAVs), since their implementation will transform the nature of transportation and promote social and economic change. Transition toward cooperative driving still requires the understanding of some key questions to assess the performances of CAVs and human-driven vehicles on roundabouts and to properly balance road safety and traffic efficiency requirements. In this view, this paper proposes a simulation-based methodological framework aiming to assess the presence of increasing proportions of CAVs on roundabouts operating at a high-capacity utilization level. A roundabout was identified in Palermo City, Italy, and built in Aimsun (version 20) to describe the stepwise methodology. The CAV-based curves of capacity by entry mechanism were developed and then used as target capacities. To calibrate the model parameters, the capacity curves were compared with the capacity data simulated by Aimsun. The impact on the safety and performance efficiency of a lane dedicated to CAVs was also examined using surrogate measures of safety. The paper ends with highlighting a general improvement with CAVs on roundabouts, and with providing some insights to assess the advantages of the automated and connected driving technologies in transitioning to smarter mobilit

    Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market

    Get PDF
    What are the dominant stocks which drive the correlations present among stocks traded in a stock market? Can a correlation analysis provide an answer to this question? In the past, correlation based networks have been proposed as a tool to uncover the underlying backbone of the market. Correlation based networks represent the stocks and their relationships, which are then investigated using different network theory methodologies. Here we introduce a new concept to tackle the above question—the partial correlation network. Partial correlation is a measure of how the correlation between two variables, e.g., stock returns, is affected by a third variable. By using it we define a proxy of stock influence, which is then used to construct partial correlation networks. The empirical part of this study is performed on a specific financial system, namely the set of 300 highly capitalized stocks traded at the New York Stock Exchange, in the time period 2001–2003. By constructing the partial correlation network, unlike the case of standard correlation based networks, we find that stocks belonging to the financial sector and, in particular, to the investment services sub-sector, are the most influential stocks affecting the correlation profile of the system. Using a moving window analysis, we find that the strong influence of the financial stocks is conserved across time for the investigated trading period. Our findings shed a new light on the underlying mechanisms and driving forces controlling the correlation profile observed in a financial market

    Abnormal shortened diastolic time length at increasing heart rates in patients with abnormal exercise-induced increase in pulmonary artery pressure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The degree of pulmonary hypertension is not independently related to the severity of left ventricular systolic dysfunction but is frequently associated with diastolic filling abnormalities. The aim of this study was to assess diastolic times at increasing heart rates in normal and in patients with and without abnormal exercise-induced increase in pulmonary artery pressure (PASP). Methods. We enrolled 109 patients (78 males, age 62 ± 13 years) referred for exercise stress echocardiography and 16 controls. The PASP was derived from the tricuspid Doppler tracing. A cut-off value of PASP ≥ 50 mmHg at peak stress was considered as indicative of abnormal increase in PASP. Diastolic times and the diastolic/systolic time ratio were recorded by a precordial cutaneous force sensor based on a linear accelerometer.</p> <p>Results</p> <p>At baseline, PASP was 30 ± 5 mmHg in patients and 25 ± 4 in controls. At peak stress the PASP was normal in 95 patients (Group 1); 14 patients (Group 2) showed an abnormal increase in PASP (from 35 ± 4 to 62 ± 12 mmHg; P < 0.01). At 100 bpm, an abnormal (< 1) diastolic/systolic time ratio was found in 0/16 (0%) controls, in 12/93 (13%) Group 1 and 7/14 (50%) Group 2 patients (p < 0.05 between groups).</p> <p>Conclusion</p> <p>The first and second heart sound vibrations non-invasively monitored by a force sensor are useful for continuously assessing diastolic time during exercise. Exercise-induced abnormal PASP was associated with reduced diastolic time at heart rates beyond 100 beats per minute.</p

    Passenger Car Equivalents for Heavy Vehicles at Roundabouts. A Synthesis Review

    Get PDF
    Passenger Car Equivalents (PCEs in the following) are used to transform a mixed fleet of vehicles into a fleet of equivalent passenger cars and to analyze capacity and level-of-service of roads and intersections. Most roundabouts guidelines propose constant values for PCEs but a single PCE value can result improper under heterogeneous traffic conditions. PCEs should be vary with traffic and road conditions and consequently PCEs applied to undersaturated traffic conditions can overestimate the heavy vehicle effect or be not sensitive to the traffic level or characteristics of heavy vehicles. Compared to other at-grade intersections, the interaction between the operational performances of the heavy vehicles and the geometric features at roundabouts can produce significant impacts on the heavy vehicle paths and traffic operations due to the curvilinear nature of the roundabout design. Literature presents various methods of estimation to obtain PCE values for heavy vehicles. The focus of this paper is to review statistical methods and traffic simulation studies based on microscopic approaches used to calculate PCEs for heavy vehicles driving roundabouts. Effects on capacity and estimates of PCEs based on models currently employed in roundabout analysis are also compared. The results obtained in this study aim at providing an overview of the existing knowledge concerning the estimation of PCEs at roundabouts and can represent a guideline for transportation engineers in planning, design and capacity analysis of roundabouts that operate under conditions of mixed traffic

    Capacity-based calculation of passenger car equivalents using traffic simulation at double-lane roundabouts

    No full text
    Calculation of passenger car equivalents for heavy vehicles represents the starting point for the operational analysis of road facilities and other traffic management applications. This paper introduces a criterion to find the passenger car equivalents that reflect traffic conditions at double-lane roundabouts, where the capacity is typically estimated for each entry lane. Based on the equivalence defined by the proportion of capacity used by vehicles of different classes, the criterion implies a comparison between the capacity that would occur with a traffic demand of passenger cars only and the capacity reached beginning from a demand with a certain percentage of heavy vehicles. A preliminary activity consisted of the comparison of the empirical capacity functions based on a meta-analytical estimation of critical and follow up headways, and simulation output data derived for a double-lane roundabout built in AIMSUN. The formulation of the calibration process as an optimisation problem enabled to minimize an objective function using the genetic algorithm tool in MATLAB®. A subroutine in Python implemented the automatic interaction with AIMSUN. Differently from methods that propose constant values for the passenger car equivalents, the results highlighted that the passenger car equivalents at double-lane roundabouts increased when the circulating flow increased, while a higher effect was expected when the traffic streams included a higher number of heavy vehicles

    Estimating pollutant emissions based on speed profiles at urban roundabouts: A pilot study

    No full text
    The paper describes the pilot study conducted to assess the feasibility of the empirical approach utilizing vehicle trajectory data from a smartphone app and the Vehicle-Specific Power methodology to estimate pollutant emissions at urban roundabouts. The goal of this research phase is to acquire instantaneous speed data from a sample of six roundabouts located in the road network of the City of Palermo, Italy, and quantify emissions generated by the test vehicle through the examined roundabouts. For the case studies of roundabouts acceleration events in the circulating and exiting areas contributed to about 25% of the emissions for a given speed profile. More in general, the results from this research shed lights for further opportunities to examine infrastructural scenarios when decision makers require to assess changes in the design or operation of urban transportation systems
    corecore