3,306 research outputs found

    Investigation of Cathode Kinetics in SOFC: Model Thin Film SrTi_(1-x)Fe_xO_(3-δ) Mixed Conducting Oxides

    Get PDF
    To understand the kinetics controlling the SOFC cathode processes, a model mixed conducting perovskite materials system, SrTi_(1-x)Fe_xO_(3-δ), was selected, offering the ability to systematically control both the levels of electronic and ionic electrical conductivity as well as the energy band structure. This, in combination with considerably simplified electrode geometry, served to demonstrate that the rate of oxygen exchange at the surface of SrTi_(1-x)Fe_xO_(3-δ) is only weakly correlated with either high electronic or ionic conductivity, in apparent contradiction with common expectations. On the other hand, evidence was found suggesting the importance of minority electronic species in determining the rate of oxygen exchange. Furthermore, the enrichment of Sr to the surface of the electrodes was found to reduce the oxygen exchange rate constant; this effect becoming more evident with increasing values of x. The observed trends are discussed in relation to the cathodic behavior of MIEC electrodes

    On Three Generalizations of Contraction

    Full text link
    We introduce three forms of generalized contraction (GC). Roughly speaking, these are motivated by allowing contraction to take place after small transients in time and/or amplitude. Indeed, contraction is usually used to prove asymptotic properties, like convergence to an attractor or entrainment to a periodic excitation, and allowing initial transients does not affect this asymptotic behavior. We provide sufficient conditions for GC, and demonstrate their usefulness using examples of systems that are not contractive, with respect to any norm, yet are GC

    Maximizing Protein Translation Rate in the Ribosome Flow Model: the Homogeneous Case

    Full text link
    Gene translation is the process in which intracellular macro-molecules, called ribosomes, decode genetic information in the mRNA chain into the corresponding proteins. Gene translation includes several steps. During the elongation step, ribosomes move along the mRNA in a sequential manner and link amino-acids together in the corresponding order to produce the proteins. The homogeneous ribosome flow model(HRFM) is a deterministic computational model for translation-elongation under the assumption of constant elongation rates along the mRNA chain. The HRFM is described by a set of n first-order nonlinear ordinary differential equations, where n represents the number of sites along the mRNA chain. The HRFM also includes two positive parameters: ribosomal initiation rate and the (constant) elongation rate. In this paper, we show that the steady-state translation rate in the HRFM is a concave function of its parameters. This means that the problem of determining the parameter values that maximize the translation rate is relatively simple. Our results may contribute to a better understanding of the mechanisms and evolution of translation-elongation. We demonstrate this by using the theoretical results to estimate the initiation rate in M. musculus embryonic stem cell. The underlying assumption is that evolution optimized the translation mechanism. For the infinite-dimensional HRFM, we derive a closed-form solution to the problem of determining the initiation and transition rates that maximize the protein translation rate. We show that these expressions provide good approximations for the optimal values in the n-dimensional HRFM already for relatively small values of n. These results may have applications for synthetic biology where an important problem is to re-engineer genomic systems in order to maximize the protein production rate

    Ribosome Flow Model with Extended Objects

    Full text link
    We study a deterministic mechanistic model for the flow of ribosomes along the mRNA molecule, called the ribosome flow model with extended objects (RFMEO). This model encapsulates many realistic features of translation including non-homogeneous transition rates along the mRNA, the fact that every ribosome covers several codons, and the fact that ribosomes cannot overtake one another. The RFMEO is a mean-field approximation of an important model from statistical mechanics called the totally asymmetric simple exclusion process with extended objects (TASEPEO). We demonstrate that the RFMEO describes biophysical aspects of translation better than previous mean-field approximations, and that its predictions correlate well with those of TASEPEO. However, unlike TASEPEO, the RFMEO is amenable to rigorous analysis using tools from systems and control theory. We show that the ribosome density profile along the mRNA in the RFMEO converges to a unique steady-state density that depends on the length of the mRNA, the transition rates along it, and the number of codons covered by every ribosome, but not on the initial density of ribosomes along the mRNA. In particular, the protein production rate also converges to a unique steady-state. Furthermore, if the transition rates along the mRNA are periodic with a common period T then the ribosome density along the mRNA and the protein production rate converge to a unique periodic pattern with period T, that is, the model entrains to periodic excitations in the transition rates. We believe that the RFMEO could be useful for modeling, understanding, and re-engineering translation as well as other important biological processes

    Solar to fuels conversion technologies: a perspective

    Get PDF
    To meet increasing energy needs, while limiting greenhouse gas emissions over the coming decades, power capacity on a large scale will need to be provided from renewable sources, with solar expected to play a central role. While the focus to date has been on electricity generation via photovoltaic (PV) cells, electricity production currently accounts for only about one-third of total primary energy consumption. As a consequence, solar-to-fuel conversion will need to play an increasingly important role and, thereby, satisfy the need to replace high energy density fossil fuels with cleaner alternatives that remain easy to transport and store. The solar refinery concept (Herron et al. in Energy Environ Sci 8:126–157, 2015), in which captured solar radiation provides energy in the form of heat, electricity or photons, used to convert the basic chemical feedstocks CO[subscript 2] and H[subscript 2]O into fuels, is reviewed as are the key conversion processes based on (1) combined PV and electrolysis, (2) photoelectrochemically driven electrolysis and (3) thermochemical processes, all focused on initially converting H[subscript 2]O and CO[subscript 2] to H[subscript 2] and CO. Recent advances, as well as remaining challenges, associated with solar-to-fuel conversion are discussed, as is the need for an intensive research and development effort to bring such processes to scale.United States. Dept. of Energy. Office of Basic Energy Sciences (Award# DE SC0002633)National Science Foundation (U.S.) (Award# DMR-1507047)MIT Skoltech Initiativ

    Fabrication and structural characterization of interdigitated thin film La1 − x Sr x CoO 3 (LSCO) electrodes

    Get PDF
    For the prospective use as micro-Solid Oxide Fuel Cell (μ-SOFC) cathodes and for the investigation of reaction kinetics, La1 − xSrxCoO3 (LSCO) mixed ionic electronic conducting thin films were deposited by DC and RF sputtering onto a number of different substrate materials and characterized. Standard photolithographic and wet chemical etching methods were utilized to microstructure the LSCO films and XRD, SEM, AFM, WDS, and RBS were used to characterize their structure, topography, and chemistry. Sputtering resulted in very homogeneous and smooth thin crystalline films with Sr deficiency and submicron sized grains. Hydrochloric acid was found to readily etch LSCO with the etching quality strongly dependent on substrate material. LSCO films were most easily etched when deposited directly on silicon substrates, etched at intermediate rates when deposited on Gd:CeO2 films, and most resistant to etching after deposition onto single crystal yttria stabilized zirconia (YSZ) substrates. Imperfect etching was attributed to interface formation and the presence of impuritie
    corecore