2 research outputs found

    Xenodiagnosis to evaluate the infectiousness of humans to sandflies in an area endemic for visceral leishmaniasis in Bihar, India : a transmission-dynamics study

    No full text
    Background: Visceral leishmaniasis, also known on the Indian subcontinent as kala-azar, is a fatal form of leishmaniasis caused by the protozoan parasite Leishmania donovani and transmitted by the bites of the vector sandfly Phlebotomus argentipes. To achieve and sustain elimination of visceral leishmaniasis, the transmission potential of individuals exposed to L donovani from across the infection spectrum needs to be elucidated. The aim of this study was to evaluate the relative infectiousness to the sandfly vector of patients with visceral leishmaniasis or post-kala-azar dermal leishmaniasis, before and after treatment, and individuals with asymptomatic infection. Methods: In this prospective xenodiagnosis study done in Muzaffarpur district of Bihar, India, we included patients with clinically confirmed active visceral leishmaniasis or post-kala-azar dermal leishmaniasis who presented to the Kala-Azar Medical Research Center. These participants received treatment for L donovani infection. We also included asymptomatic individuals identified through a serosurvey of 17 254 people living in 26 high-transmission clusters. Eligible participants were aged 12–64 years, were HIV negative, and had clinically or serologically confirmed L donovani infection. During xenodiagnosis, the forearms or lower legs of participants were exposed to 30–35 female P argentipes sandflies for 30 min. Blood-engorged flies were held in an environmental cabinet at 28°C and 85% humidity for 60–72 h, after which flies were dissected and evaluated for L donovani infection by microscopy and quantitative PCR (qPCR). The primary endpoint was the proportion of participants with visceral leishmaniasis or post-kala-azar dermal leishmaniasis, before and after treatment, as well as asymptomatic individuals, who were infectious to sandflies, with a participant considered infectious if promastigotes were observed in one or more individual flies by microscopy, or if one or more of the pools of flies tested positive by qPCR. Findings: Between July 12, 2016, and March 19, 2019, we recruited 287 individuals, including 77 with active visceral leishmaniasis, 26 with post-kala-azar dermal leishmaniasis, and 184 with asymptomatic infection. Of the patients with active visceral leishmaniasis, 42 (55%) were deemed infectious to sandflies by microscopy and 60 (78%) by qPCR before treatment. No patient with visceral leishmaniasis was found to be infectious by microscopy at 30 days after treatment, although six (8%) were still positive by qPCR. Before treatment, 11 (42%) of 26 patients with post-kala-azar dermal leishmaniasis were deemed infectious to sandflies by microscopy and 23 (88%) by qPCR. Of 23 patients who were available for xenodiagnosis after treatment, one remained infectious to flies by qPCR on the pooled flies, but none remained positive by microscopy. None of the 184 asymptomatic participants were infectious to sandflies. Interpretation: These findings confirm that patients with active visceral leishmaniasis and patients with post-kala-azar dermal leishmaniasis can transmit L donovani to the sandfly vector and suggest that early diagnosis and treatment could effectively remove these individuals as infection reservoirs. An important role for asymptomatic individuals in the maintenance of the transmission cycle is not supported by these data. Funding: Bill & Melinda Gates Foundation

    Livestock and rodents within an endemic focus of Visceral Leishmaniasis are not reservoir hosts for Leishmania donovani.

    No full text
    Leishmaniasis on the Indian subcontinent is thought to have an anthroponotic transmission cycle. There is no direct evidence that a mammalian host other than humans can be infected with Leishmania donovani and transmit infection to the sand fly vector. The aim of the present study was to evaluate the impact of sand fly feeding on other domestic species and provide clinical evidence regarding possible non-human reservoirs through experimental sand fly feeding on cows, water buffalo goats and rodents. We performed xenodiagnosis using colonized Phlebotomus argentipes sand flies to feed on animals residing in villages with active Leishmania transmission based on current human cases. Xenodiagnoses on mammals within the endemic area were performed and blood-fed flies were analyzed for the presence of Leishmania via qPCR 48hrs after feeding. Blood samples were also collected from these mammals for qPCR and serology. Although we found evidence of Leishmania infection within some domestic mammals, they were not infectious to vector sand flies. Monitoring infection in sand flies and non-human blood meal sources in endemic villages leads to scientific proof of exposure and parasitemia in resident mammals. Lack of infectiousness of these domestic mammals to vector sand flies indicates that they likely play no role, or a very limited role in Leishmania donovani transmission to people in Bihar. Therefore, a surveillance system in the peri-/post-elimination phase of visceral leishmaniasis (VL) must monitor absence of transmission. Continued surveillance of domestic mammals in outbreak villages is necessary to ensure that a non-human reservoir is not established, including domestic mammals not present in this study, specifically dogs
    corecore