30 research outputs found

    Dutch Outcome in Implantable Cardioverter-Defibrillator Therapy:Implantable Cardioverter-Defibrillator-Related Complications in a Contemporary Primary Prevention Cohort

    Get PDF
    Background One third of primary prevention implantable cardioverter-defibrillator patients receive appropriate therapy, but all remain at risk of defibrillator complications. Information on these complications in contemporary cohorts is limited. This study assessed complications and their risk factors after defibrillator implantation in a Dutch nationwide prospective registry cohort and forecasts the potential reduction in complications under distinct scenarios of updated indication criteria. Methods and Results Complications in a prospective multicenter registry cohort of 1442 primary implantable cardioverter-defibrillator implant patients were classified as major or minor. The potential for reducing complications was derived from a newly developed prediction model of appropriate therapy to identify patients with a low probability of benefitting from the implantable cardioverter-defibrillator. During a follow-up of 2.2 years (interquartile range, 2.0-2.6 years), 228 complications occurred in 195 patients (13.6%), with 113 patients (7.8%) experiencing at least one major complication. Most common ones were lead related (n=93) and infection (n=18). Minor complications occurred in 6.8% of patients, with lead-related (n=47) and pocket-related (n=40) complications as the most prevailing ones. A surgical reintervention or additional hospitalization was required in 53% or 61% of complications, respectively. Complications were strongly associated with device type. Application of stricter implant indication results in a comparable proportional reduction of (major) complications. Conclusions One in 13 patients experiences at least one major implantable cardioverter-defibrillator-related complication, and many patients undergo a surgical reintervention. Complications are related to defibrillator implantations, and these should be discussed with the patient. Stricter implant indication criteria and careful selection of device type implanted may have significant clinical and financial benefits

    Short-Term Variability of the QT Interval Can be Used for the Prediction of Imminent Ventricular Arrhythmias in Patients With Primary Prophylactic Implantable Cardioverter Defibrillators

    Get PDF
    Background Short-term variability of the QT interval (STVQT) has been proposed as a novel electrophysiological marker for the prediction of imminent ventricular arrhythmias in animal models. Our aim is to study whether STVQT can predict imminent ventricular arrhythmias in patients. Methods and Results In 2331 patients with primary prophylactic implantable cardioverter defibrillators, 24-hour ECG Holter recordings were obtained as part of the EU-CERT-ICD (European Comparative Effectiveness Research to Assess the Use of Primary Prophylactic Implantable Cardioverter Defibrillators) study. ECG Holter recordings showing ventricular arrhythmias of >4 consecutive complexes were selected for the arrhythmic groups (n=170), whereas a control group was randomly selected from the remaining Holter recordings (n=37). STVQT was determined from 31 beats with fiducial segment averaging and calculated as [Formula: see text], where Dn represents the QT interval. STVQT was determined before the ventricular arrhythmia or 8:00 am in the control group and between 1:30 and 4:30 am as baseline. STVQT at baseline was 0.84±0.47 ms and increased to 1.18±0.74 ms (P<0.05) before the ventricular arrhythmia, whereas the STVQT in the control group remained unchanged. The arrhythmic patients were divided into three groups based on the severity of the arrhythmia: (1) nonsustained ventricular arrhythmia (n=32), (2) nonsustained ventricular tachycardia (n=134), (3) sustained ventricular tachycardia (n=4). STVQT increased before nonsustained ve

    The concept of triple wavefront fusion during biventricular pacing : Using the EGM to produce the best acute hemodynamic improvement in CRT

    No full text
    Background: Previous reports suggest that biventricular pacing (BiVp) fused with intrinsic conduction (BiVp-fusion, triple wavefront fusion) is associated with improved resynchronization compared to pure-BiVp in cardiac resynchronization therapy (CRT). This study aimed to assess the association between acute hemodynamic benefit of CRT and signs of BiVp-fusion by using a novel electrogram (EGM)-based method. Methods: In 17 patients undergoing CRT implantation, 28 combinations of atrioventricular (AV) and interventricular (VV) delays were applied while invasively measuring acute hemodynamic response based on maximum rate of left ventricular (LV) pressure rise (LV dP/dtmax) to assess optimal BiVp settings. BiVp-fusion was noted if farfield signal (caused by first intrinsic ventricular depolarization) was seen prior to right ventricular (RV) pacing (RVp) artifact on integrated bipolar RV EGM, or QRS morphology changed compared to pure-BiVp (short AV-delay) as seen on electrocardiogram (ECG). Results: Mean optimal RVp timing was at 98 ± 17% of intrinsic right atrial (RA)-RVfarfield (interval from right atrial pace or sense to RV farfield signal) interval, while preactivating the LV at 50 ± 11% of RA-RVsense (interval from right atrial pace or sense to RV sense interval) interval. BiVp-fusion was noted in 16 of 17 (94%) patients on ECG during optimal BiVp. Eight of these patients showed intrinsic farfield signal prior to RVp artifact on RV EGM. In the remaining eight, the RVp was paced just within the RA-RVfarfield interval with a mean of 25 ± 14 ms prior to the onset; therefore, the intrinsic farfield was masked. Conclusion: Optimal hemodynamic BiVp facilitates triple wavefront fusion, by pacing the RV around the onset of intrinsic farfield signal on RV EGM, while preactivating the LV. Aiming at BiVp-fusion could be a target for noninvasive EGM-based CRT device setting optimization

    Circadian pattern of RR- and QT-interval.

    No full text
    <p><b>(</b>A) mean ± SEM at beginning of every hour of total cohort (n = 30). Significant higher values are seen at night compared to during the day. * = p< 0.05 compared to 0:00. (B) Mean ± SEM at beginning of every hour of low AS-group (blue line, n = 15) and high AS group (red line, n = 15). No significant differences are found in the circadian pattern of RR-interval or QT-interval between low and high AS group.</p

    Circadian pattern of STV-QT in AS subgroups.

    No full text
    <p>Mean ± SEM at beginning of every hour in low AS (blue line, n = 15) and patients with high AS (red line, n = 15). * p < 0.05 compared to 0:00; § p <0.05 compared to low AS. STV-QT peaks at 08:00 and 18:00 in high AS patients, but is stable during the day in low AS patients.</p

    Circadian pattern of STV-QT.

    No full text
    <p>Mean ± SEM at beginning of every hour of total cohort (n = 30). No clear circadian pattern is found, however, two non-significant peaks at 08:00 and 18:00 can be discerned.</p

    Circadian pattern of STV-QT in individual patients.

    No full text
    <p>Individual patients in low AS group (left) and high AS group (right). High inter- and intraindividual variability can be seen, which is more pronounced in the high AS group.</p

    Lower retention after retrograde coronary venous infusion compared with intracoronary infusion of mesenchymal stromal cells in the infarcted porcine myocardium

    No full text
    Background Commonly used strategies for cell delivery to the heart are intramyocardial injection and intracoronary (IC) infusion, both having their advantages and disadvantages. Therefore, alternative strategies, such as retrograde coronary venous infusion (RCVI), are explored. The aim of this confirmatory study was to compare cardiac cell retention between RCVI and IC infusion. As a secondary end point, the procedural safety of RCVI is assessed. Methods Four weeks after myocardial infarction, 12 pigs were randomised to receive mesenchymal stromal cells, labelled with Indium-111, via RCVI (n=6) or IC infusion (n=6). Four hours after cell administration, nuclear imaging was performed to determine the number of cells retained in the heart both in vivo and ex vivo. Procedure-related safety measures were reported. Results Cardiac cell retention is significantly lower after RCVI compared with IC infusion (in vivo: RCVI: median 2.89% vs IC: median 13.74%, p=0.002, ex vivo: RCVI: median 2.55% vs IC: median 39.40%, p=0.002). RCVI led to development of pericardial fluid and haematomas on the frontal wall of the heart in three cases. Coronary venous dissection after RCVI was seen in three pigs, of which one also developed pericardial fluid and a haematoma. IC infusion led to no flow in one pig. Conclusion RCVI is significantly less efficient in delivering cells to the heart compared with IC infusion. RCVI led to more procedure-related safety issues than IC infusion, with multiple cases of venous dissection and development of haematomas and pericardial fluid collections
    corecore