21 research outputs found

    Metal-Based Netropsin Mimics Showing AT-Selective DNA Binding and DNA Cleavage Activity at Red Light

    No full text
    Copper(II) bis-arginate [Cu(Larg)2][Cu(L-arg)_2] (NO3)2(NO_3)_2(1) and [Cu(L-arg)(phen)-Cl]Cl (2) as mimics of the minor-groove-binding natural antibiotic netropsin show preferential binding to the AT-rich region of doublestranded DNA. The complexes with a d-d band near 600 nm display oxidative DNA cleavage activity on photoirradiation at UV-A light of 365 nm and at red light of 647.1 nm (Ar-Kr laser) in a metal-assisted photoexcitation process forming singlet oxygen (1O2)(^{1}O_2) species in a type-2 pathway

    Copper(II) Complexes of l-Arginine as Netropsin Mimics Showing DNA Cleavage Activity in Red Light

    Get PDF
    Copper(II) complexes [Cu(L-arg)(2)](NO3)(2) (1) and [Cu(L-arg)(B)Cl]Cl (2-5), where B is a heterocyclic base, namely, 2,2'-bipyridine (bpy, 2), 1,10-phenanthroline (phen, 3), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 4), and dipyrido[3,2-a:2',3'-c)phenazine (dppz, 5), are prepared and their DNA binding and photoinduced DNA cleavage activity studied. Ternary complex 3, structurally characterized using X-ray crystallography, shows a square-pyramidal (4 + 1) coordination geometry in which the N,O-donor L-arginine and N,N-donor 1,10-phenanthroline form the basal plane with one chloride at the elongated axial site. The complex has a pendant cationic guanidinium moiety. The one-electron paramagnetic complexes display a metal-centered d-d band in the range of 590-690 nm in aqueous DMF They show quasireversible cyclic voltammetric response due to the Cu(II)/Cu(I) couple in the range of -0.1 to -0.3 V versus a saturated calomel electrode in a DMF-Tris HCl buffer (pH 7.2). The DNA binding propensity of the complexes is studied using various techniques. Copper(II) bis-arginate 1 mimics the minor groove binder netropsin by showing preferential binding to the AT-rich sequence of double-strand (ds) DNA. DNA binding study using calf thymus DNA gives an order: 5 (L-arg-dppz) >= 1 (biS-L-arg) > 4 (L-arg-dpq) > 3 (L-arg-phen) >> 2 (L-arg-bpy). Molecular docking calculations reveal that the complexes bind through extensive hydrogen bonding and electrostatic interactions with ds-DNA. The complexes cleave supercoiled pUC19 DNA in the presence of 3-mercaptopropionic acid as a reducing agent forming hydroxyl ((OH)-O-center dot) radicals. The complexes show oxidative photoinduced DNA cleavage activity in UV-A light of 365 nm and red light of 647.1 nm (Ar-Kr mixed-gas-ion laser) in a metal-assisted photoexcitation process forming singlet oxygen (O-1(2)) species in a type-II pathway. All of the complexes, barring complex 2, show efficient DNA photocleavage activity. Complexes 4 and 5 exhibit significant double-strand breaks of DNA in red light of 647.1 nm due to the presence of two photosensitizers, namely, L-arginine and dpq or dppz in the molecules

    Photo-induced double-strand DNA and site-specific protein cleavage activity of L-histidine (mu-oxo)diiron(III) complexes of heterocyclic bases

    No full text
    Three oxo-bridged diiron(III) complexes of L-histidine and heterocyclic bases [Fe-2(mu-O)(L-his)(2)(B)(2)](ClO4)(2) (1-3), where B is 2,2'-bipyridine (bpy),1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), were prepared and characterized. The bpy complex 1 was structurally characterized by X-ray crystallography. The molecular structure showed a {Fe-2(mu-O)} core in which iron(III) in a FeN4O2 coordination is bound to tridentate monoanionic L-histidine and bidentate bpy ligands. The Fe center dot center dot center dot Fe distance is similar to 3.5 angstrom. The Fe-O-Fe unit is essentially linear, giving a bond angle of similar to 172 degrees. The complexes showed irreversible cyclic voltammetric cathodic response near -0.1 V vs. SCE in H2O-0.1 M KCl. The binuclear units displayed antiferromagnetic interaction between two high-spin (S = 5/2) iron(III) centers giving a -J value of -110 cm(-1). The complexes showed good DNA binding propensity giving a binding constant value of similar to 10(5) M-1. Isothermal titration calorimetric data indicated single binding mode to the DNA. The binding was found to be driven by negative free energy change and enthalpy. The dpq complex 3 showed oxidative double-strand DNA cleavage on exposure to UV-A and visible light. The phen complex 2 displayed single-strand photocleavage of DNA. The DNA double-strand breaks were rationalized from theoretical molecular docking calculations. Mechanistic investigations showed formation of hydroxyl radicals as the reactive species through photodecarboxylation of the L-histidine ligand. The complexes exhibited good binding propensity to bovine serum albumin (BSA) protein in Tris-HCl/NaCl buffer medium. The dpq complex 3 showed UV-A light-induced site-specific oxidative BSA cleavage forming fragments of similar to 45 kDa and similar to 20 kDa molecular weights via SOH pathway

    Double-strand DNA cleavage from photodecarboxylation of (\mu-oxo)diiron(III) L-histidine complex in visible light

    No full text
    The oxo-bridged diiron(III) complex [{Fe(Lhis)(dpq)}2(μO)]2+[\{Fe(L-his)(dpq)\}_2(\mu -O)]^{2+} having L-histidine (L-his) and dipyrido[3,2-d:2,32^{\prime},3^{\prime}-f]quinoxaline (dpq) bound to Fe(III) exemplifies an ironbased model photonuclease that shows visible light-induced DNA double-strand cleavage in a photodecarboxylation pathway and models iron-bleomycin activity

    Photo-induced double-strand DNA and site-specific protein cleavage activity of L-histidine (μ-oxo)diiron(III) complexes of heterocyclic bases

    No full text
    Three oxo-bridged diiron(III) complexes of L-histidine and heterocyclic bases [Fe2(μ-O)(L-his)2(B)2](ClO4)2 (1-3), where B is 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), were prepared and characterized. The bpy complex 1 was structurally characterized by X- ray crystallography. The molecular structure showed a {Fe2(μ-O)} core in which iron(III) in a FeN4O2 coordination is bound to tridentate monoanionic L-histidine and bidentate bpy ligands. The Fe···Fe distance is ~3.5 Å. The Fe-O-Fe unit is essentially linear, giving a bond angle of ~172°. The complexes showed irreversible cyclic voltammetric cathodic response near −0.1 V vs. SCE in H2O-0.1 M KCl. The binuclear units displayed antiferromagnetic interaction between two high-spin (S=5/2) iron(III) centers giving a −J value of ~110 cm−1. The complexes showed good DNA binding propensity giving a binding constant value of ~105 M−1. Isothermal titration calorimetric data indicated single binding mode to the DNA. The binding was found to be driven by negative free energy change and enthalpy. The dpq complex 3 showed oxidative double-strand DNA cleavage on exposure to UV-A and visible light. The phen complex 2 displayed single-strand photocleavage of DNA. The DNA double-strand breaks were rationalized from theoretical molecular docking calculations. Mechanistic investigations showed formation of hydroxyl radicals as the reactive species through photodecarboxylation of the L-histidine ligand. The complexes exhibited good binding propensity to bovine serum albumin (BSA) protein in Tris-HCl/NaCl buffer medium. The dpq complex 3 showed UV-A light-induced site-specific oxidative BSA cleavage forming fragments of ~45 kDa and ~20 kDa molecular weights via OH pathway

    Double-strand DNA cleavage from photodecarboxylation of (μ-oxo)diiron(III) L-histidine complex in visible light

    No full text
    The oxo-bridged diiron(III) complex [{Fe(L-his)(dpq)}<SUB>2</SUB>(&#956;-O)]<SUP>2+</SUP> having L-histidine (L-his) and dipyrido[3,2-d:2,3-f]quinoxaline (dpq) bound to Fe(III) exemplifies an iron-based model photonuclease that shows visible light-induced DNA double-strand cleavage in a photodecarboxylation pathway and models iron-bleomycin activity

    Copper(II) Complexes of l-Arginine as Netropsin Mimics Showing DNA Cleavage Activity in Red Light

    No full text
    Copper(II) complexes [Cu(L-arg)(2)](NO3)(2) (1) and [Cu(L-arg)(B)Cl]Cl (2-5), where B is a heterocyclic base, namely, 2,2'-bipyridine (bpy, 2), 1,10-phenanthroline (phen, 3), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 4), and dipyrido[3,2-a:2',3'-c)phenazine (dppz, 5), are prepared and their DNA binding and photoinduced DNA cleavage activity studied. Ternary complex 3, structurally characterized using X-ray crystallography, shows a square-pyramidal (4 + 1) coordination geometry in which the N,O-donor L-arginine and N,N-donor 1,10-phenanthroline form the basal plane with one chloride at the elongated axial site. The complex has a pendant cationic guanidinium moiety. The one-electron paramagnetic complexes display a metal-centered d-d band in the range of 590-690 nm in aqueous DMF They show quasireversible cyclic voltammetric response due to the Cu(II)/Cu(I) couple in the range of -0.1 to -0.3 V versus a saturated calomel electrode in a DMF-Tris HCl buffer (pH 7.2). The DNA binding propensity of the complexes is studied using various techniques. Copper(II) bis-arginate 1 mimics the minor groove binder netropsin by showing preferential binding to the AT-rich sequence of double-strand (ds) DNA. DNA binding study using calf thymus DNA gives an order: 5 (L-arg-dppz) &gt;= 1 (biS-L-arg) &gt; 4 (L-arg-dpq) &gt; 3 (L-arg-phen) &gt;&gt; 2 (L-arg-bpy). Molecular docking calculations reveal that the complexes bind through extensive hydrogen bonding and electrostatic interactions with ds-DNA. The complexes cleave supercoiled pUC19 DNA in the presence of 3-mercaptopropionic acid as a reducing agent forming hydroxyl ((OH)-O-center dot) radicals. The complexes show oxidative photoinduced DNA cleavage activity in UV-A light of 365 nm and red light of 647.1 nm (Ar-Kr mixed-gas-ion laser) in a metal-assisted photoexcitation process forming singlet oxygen (O-1(2)) species in a type-II pathway. All of the complexes, barring complex 2, show efficient DNA photocleavage activity. Complexes 4 and 5 exhibit significant double-strand breaks of DNA in red light of 647.1 nm due to the presence of two photosensitizers, namely, L-arginine and dpq or dppz in the molecules

    DNA cleavage in red light promoted by copper(II) complexes of -amino acids and photoactive phenanthroline bases

    No full text
    Ternary copper(II) complexes [Cu(L-trp)(B)(H2O)](NO3) ( 1–3) and [Cu(L-phe)(B)(H2O)](NO3) ( 4–6) of L-tryptophan (L-trp) and L-phenylalanine (L-phe) having phenanthroline bases (B), viz. 1,10-phenanthroline (phen, 1 and 4), dipyrido[3,2-d:2,3-f]quinoxaline (dpq, 2 and 5) and dipyrido[3,2-a:2,3-c]phenazine (dppz, 3 and 6), were prepared and characterized by physico-chemical techniques. Complexes 3 and 6 were structurally characterized by X-ray crystallography and show the presence of a square pyramidal (4 + 1) CuN3O2 coordination geometry in which the N,O-donor amino acid (L-trp or L-phe) and N,N-donor phenanthroline base bind at the equatorial plane with an aqua ligand coordinated at the elongated axial site. Complex 3 shows significant distortion from the square pyramidal geometry and a strong intramolecular – stacking interaction between the pendant indole ring of L-trp and the planar dppz aromatic moiety. All the complexes display good binding propensity to the calf thymus DNA giving an order: 3, 6 (dppz) > 2, 5 (dpq) > 1, 4 (phen). The binding constant (Kb) values are in the range of 2.1 × 104–1.1 × 106 mol-1 with the binding site size (s) values of 0.17–0.63. The phen and dpq complexes are minor groove binders while the dppz analogues bind at the DNA major groove. Theoretical DNA docking studies on 2 and 3 show the close proximity of two photosensitizers, viz. the indole moiety of L-trp and the quinoxaline/phenazine of the dpq/dppz bases, to the complementary DNA strands. Complexes 2 and 3 show oxidative DNA double strand breaks (dsb) of supercoiled (SC) DNA forming a significant quantity of linear DNA along with the nicked circular (NC) form on photoexposure to UV-A light of 365 nm and red light of 647.1 nm (Ar–Kr laser). Complexes 1, 5 and 6 show only single strand breaks (ssb) forming NC DNA. The red light induced DNA cleavage involves metal-assisted photosensitization of L-trp and dpq/dppz base resulting in the formation of a reactive singlet oxygen (1O2) species

    Allosteric Transition Induced by Mg2+ Ion in a Transactivator Monitored by SERS

    No full text
    We demonstrate the utility of the surface-enhanced Raman spectroscopy (SERS) to monitor conformational transitions in protein upon ligand binding. The changes in protein's secondary and tertiary structures were monitored using amide and aliphatic/aromatic side chain vibrations. Changes in these bands are suggestive of the stabilization of the secondary and tertiary structure of transcription activator protein C in the presence of Mg2+ ion, whereas the spectral fingerprint remained unaltered in the case of a mutant protein, defective in Mg2+ binding. The importance of the acidic residues in Mg2+ binding, which triggers an overall allosteric transition in the protein, is visualized in the molecular model. The present study thus opens up avenues toward the application of SERS as a potential tool for gaining structural insights into the changes occurring during conformational transitions in proteins

    Anaerobic Photocleavage of DNA in Red Light by Dicopper(II) Complexes of 3,3'-Dithiodipropionic Acid

    No full text
    Binuclear copper(II) complexes [{(phen)Cu-II)2(mu-dtdp)(2)] (1), [{(dpq)Cu-II}(2)(mu-dtdp)(2)] (2), [{(phen)Cu-II}(2)(mu-az)(2)] (3), and [{(dpq)Cu-II}(2)(mu-az)(2)] (4) and a zinc(II) complex [{(phen)Zn-II}(2)(mu-dtdp)(2)] (5), having 3,3'-dithiodipropionic acid (H(2)dtdp), azelaic acid (nonanedioic acid), 1,10-phenanthroline (phen), and dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), were prepared and characterized by physicochemical methods. Complex I has been structurally characterized by X-ray crystallography. The complexes have each metal center bound to a chelating phenanthroline base and two bridging carboxylate ligands giving a square-planar MN2O2 coordination geometry. The molecular structure of complex 1 shows two sterically constrained disulfide moieties of the dtdp ligands. The complexes show good binding propensity to calf thymus DNA in the major groove. The photoinduced DNA cleavage activity of the complexes has been studied using 365 nm UV light and 647.1 nm and >750 nm red light under both aerobic and anaerobic conditions. The phen complex 1, having dtdp ligand, cleaves supercoiled (SC) DNA to its nicked circular (NC) form. The dpq analogue 2 shows formation of a significant quantity of linear DNA resulting from double-strand breaks (dsb) in air. Mechanistic studies reveal the involvement of HO center dot and O-1(2) as the reactive species under an aerobic medium. The dsb of DNA is rationalized from the docking studies on 2, showing a close proximity of two photosensitizers, namely, the disulfide moiety of dtdp and the quinoxaline ring of dpq to the complementary strands of DNA. The copper(II) complexes of the dtdp ligand cleave SC DNA to its NC form upon exposure to UV or red light under an argon atmosphere. An enhancement of the DNA cleavage activity under argon has been observed upon increasing the concentration of the DMF solvent in the DMF-Tris buffer medium. Theoretical studies suggest the possibility of sulfide anion radical formation from a copper(II)-bound dtdp ligand in >750 nm red light, which further cleaves the DNA. The copper(II) azelate complexes are inactive under similar reaction conditions. The azelate complex of the dpq ligand cleaves DNA in air following the 102 pathway. The zinc(II) complex of the dtdp ligand (5) does not show any photoinduced DNA cleavage activity in red ligh
    corecore