4 research outputs found

    Genetic diversity of aflatoxin-producing Aspergillus flavus isolated from selected groundnut growing agro-ecological zones of Uganda

    Get PDF
    Background: Groundnut pre- and post-harvest contamination is commonly caused by fungi from the Genus Aspergillus. Aspergillus flavus is the most important of these fungi. It belongs to section Flavi; a group consisting of aflatoxigenic (A. flavus, A. parasiticus and A. nomius) and non-aflatoxigenic (A. oryzae, A. sojae and A. tamarii) fungi. Aflatoxins are food-borne toxic secondary metabolites of Aspergillus species associated with severe hepatic carcinoma and children stuntedness. Despite the well-known public health significance of aflatoxicosis, there is a paucity of information about the prevalence, genetic diversity and population structure of A. flavus in different groundnut growing agroecological zones of Uganda. This cross-sectional study was therefore conducted to fill this knowledge gap. Results: The overall pre- and post-harvest groundnut contamination rates with A. flavus were 30.0 and 39.2% respectively. Pre- and post-harvest groundnut contamination rates with A. flavus across AEZs were; 2.5 and 50.0%; (West Nile), 55.0 and 35.0% (Lake Kyoga Basin) and 32.5 and 32.5% (Lake Victoria Basin) respectively. There was no significant difference (χ2 =2, p = 0.157) in overall pre- and post-harvest groundnut contamination rates with A. flavus and similarly no significant difference (χ2 =6, p = 0.199) was observed in the pre- and post-harvest contamination of groundnut with A. flavus across the three AEZs. The LKB had the highest incidence of aflatoxin-producing Aspergillus isolates while WN had no single Aspergillus isolate with aflatoxin-producing potential. Aspergillus isolates from the pre-harvest groundnut samples had insignificantly higher incidence of aflatoxin production (χ2= 2.667, p = 0.264) than those from the post-harvest groundnut samples. Overall, A. flavus isolates exhibited moderate level (92%, p = 0.02) of genetic diversity across the three AEZs and low level (8%, p = 0.05) of genetic diversity within the individual AEZs. There was a weak positive correlation (r = 0.1241, p = 0.045) between genetic distance and geographic distance among A. flavus populations in the LKB, suggesting that genetic differentiation in the LKB population might be associated to geographic distance. A very weak positive correlation existed between genetic variation and geographic location in the entire study area (r = 0.01, p = 0.471), LVB farming system (r = 0.0141, p = 0.412) and WN farming system (r= 0.02, p = 0.478). Hierarchical clustering using the unweighted pair group method with arithmetic means (UPGMA) revealed two main clusters of genetically similar A. flavus isolates. Conclusions: These findings provide evidence that genetic differentiation in A. flavus populations is independent of geographic distance. This information can be valuable in the development of a suitable biocontrol management strategy of aflatoxin-producing A. flavus

    Genetic diversity of aflatoxin-producing Aspergillus flavus isolated from selected groundnut growing agro-ecological zones of Uganda

    Get PDF
    Background: Groundnut pre- and post-harvest contamination is commonly caused by fungi from the Genus Aspergillus. Aspergillus flavus is the most important of these fungi. It belongs to section Flavi; a group consisting of aflatoxigenic (A. flavus, A. parasiticus and A. nomius) and non-aflatoxigenic (A. oryzae, A. sojae and A. tamarii) fungi. Aflatoxins are food-borne toxic secondary metabolites of Aspergillus species associated with severe hepatic carcinoma and children stuntedness. Despite the well-known public health significance of aflatoxicosis, there is a paucity of information about the prevalence, genetic diversity and population structure of A. flavus in different groundnut growing agroecological zones of Uganda. This cross-sectional study was therefore conducted to fill this knowledge gap. Results: The overall pre- and post-harvest groundnut contamination rates with A. flavus were 30.0 and 39.2% respectively. Pre- and post-harvest groundnut contamination rates with A. flavus across AEZs were; 2.5 and 50.0%; (West Nile), 55.0 and 35.0% (Lake Kyoga Basin) and 32.5 and 32.5% (Lake Victoria Basin) respectively. There was no significant difference (χ2 =2, p = 0.157) in overall pre- and post-harvest groundnut contamination rates with A. flavus and similarly no significant difference (χ2 =6, p = 0.199) was observed in the pre- and post-harvest contamination of groundnut with A. flavus across the three AEZs. The LKB had the highest incidence of aflatoxin-producing Aspergillus isolates while WN had no single Aspergillus isolate with aflatoxin-producing potential. Aspergillus isolates from the pre-harvest groundnut samples had insignificantly higher incidence of aflatoxin production (χ2= 2.667, p = 0.264) than those from the post-harvest groundnut samples. Overall, A. flavus isolates exhibited moderate level (92%, p = 0.02) of genetic diversity across the three AEZs and low level (8%, p = 0.05) of genetic diversity within the individual AEZs. There was a weak positive correlation (r = 0.1241, p = 0.045) between genetic distance and geographic distance among A. flavus populations in the LKB, suggesting that genetic differentiation in the LKB population might be associated to geographic distance. A very weak positive correlation existed between genetic variation and geographic location in the entire study area (r = 0.01, p = 0.471), LVB farming system (r = 0.0141, p = 0.412) and WN farming system (r= 0.02, p = 0.478). Hierarchical clustering using the unweighted pair group method with arithmetic means (UPGMA) revealed two main clusters of genetically similar A. flavus isolates. Conclusions: These findings provide evidence that genetic differentiation in A. flavus populations is independent of geographic distance. This information can be valuable in the development of a suitable biocontrol management strategy of aflatoxin-producing A. flavus

    LLIN evaluation in Uganda project (LLINEUP): The fabric integrity, chemical content and bioefficacy of long-lasting insecticidal nets treated with and without piperonyl butoxide across two years of operational use in Uganda.

    Get PDF
    Long-lasting insecticidal nets (LLINs) supplemented with the synergist piperonyl butoxide have been developed in response to growing pyrethroid resistance; however, their durability in the field remains poorly described. A pragmatic cluster-randomised trial was embedded into Uganda's 2017-2018 LLIN distribution to compare the durability of LLINs with and without PBO. A total of 104 clusters (health sub-districts) were included with each receiving one of four LLIN products, two with pyrethroid + PBO (Olyset Plus and PermaNet 3.0) and two pyrethroid-only (Olyset Net and PermaNet 2.0). Nets were sampled at baseline, 12 and 25 months post-distribution to assess physical condition, chemical content, and bioefficacy. Physical condition was quantified using proportionate Hole Index and chemical content measured using high-performance liquid chromatography. Bioefficacy was assessed with three-minute World Health Organisation (WHO) Cone and Wireball assays using pyrethroid-resistant Anopheles gambiae, with 1-h knockdown and 24-h mortality recorded. There was no difference in physical durability between LLIN products assessed (P = 0.644). The pyrethroid content of all products remained relatively stable across time-points but PBO content declined by 55% (P < 0.001) and 58% (P < 0.001) for Olyset Plus and PermaNet 3.0 respectively. Both PBO LLINs were highly effective against pyrethroid-resistant mosquitoes when new, knocking down all mosquitoes. However, bioefficacy declined over time with Olyset Plus knocking down 45.72% (95% CI: 22.84-68.62%, P = 0.021) and Permanent 3.0 knocking down 78.57% (95% CI: 63.57-93.58%, P < 0.001) after 25 months. Here we demonstrate that both Olyset Plus and PermaNet 3.0 are as durable as their pyrethroid-only equivalents and had superior bioefficacy against pyrethroid-resistant An. gambiae. However, the superiority of PBO-LLINs decreased with operational use, correlating with a reduction in total PBO content. This decline in bioefficacy after just two years is concerning and there is an urgent need to assess the durability of PBO LLINs in other settings
    corecore