80 research outputs found

    A General Analytical Approximation to Impulse Response of 3-D Microfluidic Channels in Molecular Communication

    Get PDF
    In this paper, the impulse response for a 3-D microfluidic channel in the presence of Poiseuille flow is obtained by solving the diffusion equation in radial coordinates. Using the radial distribution, the axial distribution is then approximated accordingly. Since Poiseuille flow velocity changes with radial position, molecules have different axial properties for different radial distributions. We, therefore, present a piecewise function for the axial distribution of the molecules in the channel considering this radial distribution. Finally, we lay evidence for our theoretical derivations for impulse response of the microfluidic channel and radial distribution of molecules through comparing them using various Monte Carlo simulations.Comment: The manuscript is submitted to IEEE: Transactions on Nanobioscienc

    Channel Model of Molecular Communication via Diffusion in a Vessel-like Environment Considering a Partially Covering Receiver

    Full text link
    By considering potential health problems that a fully covering receiver may cause in vessel-like environments, the implementation of a partially covering receiver is needed. To this end, distribution of hitting location of messenger molecules (MM) is analyzed within the context of molecular communication via diffusion with the aim of channel modeling. The distribution of these MMs for a fully covering receiver is analyzed in two parts: angular and radial dimensions. For the angular distribution analysis, the receiver is divided into 180 slices to analyze the mean, standard deviation, and coefficient of variation of these slices. For the axial distance distribution analysis, Kolmogorov- Smirnov test is applied for different significance levels. Also, two different implementations of the reflection from the vessel surface (i.e., rollback and elastic reflection) are compared and mathematical representation of elastic reflection is given. The results show that MMs have tendency to spread uniformly beyond a certain ratio of the distance to the vessel radius. By utilizing the uniformity, we propose a channel model for the partially covering receiver in vessel-like environments and validate the proposed model by simulations

    MOL-Eye: A New Metric for the Performance Evaluation of a Molecular Signal

    Get PDF
    Inspired by the eye diagram in classical radio frequency (RF) based communications, the MOL-Eye diagram is proposed for the performance evaluation of a molecular signal within the context of molecular communication. Utilizing various features of this diagram, three new metrics for the performance evaluation of a molecular signal, namely the maximum eye height, standard deviation of received molecules, and counting SNR (CSNR) are introduced. The applicability of these performance metrics in this domain is verified by comparing the performance of binary concentration shift keying (BCSK) and BCSK with consecutive power adjustment (BCSK-CPA) modulation techniques in a vessel-like environment with laminar flow. The results show that, in addition to classical performance metrics such as bit-error rate and channel capacity, these performance metrics can also be used to show the advantage of an efficient modulation technique over a simpler one

    Analytical Derivation of the Impulse Response for the Bounded 2-D Diffusion Channel

    Get PDF
    This paper focuses on the derivation of the distribution of diffused particles absorbed by an agent in a bounded environment. In particular, we analogously consider to derive the impulse response of a molecular communication channel in 2-D and 3-D environment. In 2-D, the channel involves a point transmitter that releases molecules to a circular absorbing receiver that absorbs incoming molecules in an environment surrounded by a circular reflecting boundary. Considering this setup, the joint distribution of the molecules on the circular absorbing receiver with respect to time and angle is derived. Using this distribution, the channel characteristics are examined. Furthermore, we also extend this channel model to 3-D using a cylindrical receiver and investigate the channel properties. We also propose how to obtain an analytical solution for the unbounded 2-D channel from our derived solutions, as no analytical derivation for this channel is present in the literature.Comment: 13 pages and 5 figure
    • …
    corecore