11 research outputs found

    Context-Specific Effects of TGF-β/SMAD3 in Cancer Are Modulated by the Epigenome.

    Get PDF
    The transforming growth factor beta (TGF-β) signaling pathway exerts opposing effects on cancer cells, acting as either a tumor promoter or a tumor suppressor. Here, we show that these opposing effects are a result of the synergy between SMAD3, a downstream effector of TGF-β signaling, and the distinct epigenomes of breast-tumor-initiating cells (BTICs). These effects of TGF-β are associated with distinct gene expression programs, but genomic SMAD3 binding patterns are highly similar in the BTIC-promoting and BTIC-suppressing contexts. Our data show cell-type-specific patterns of DNA and histone modifications provide a modulatory layer by determining accessibility of genes to regulation by TGF-β/SMAD3. LBH, one such context-specific target gene, is regulated according to its DNA methylation status and is crucial for TGF-β-dependent promotion of BTICs. Overall, these results reveal that the epigenome plays a central and previously overlooked role in shaping the context-specific effects of TGF-β in cancer.S.J.V. was supported by a grant from the Dutch Cancer Foundation (KWF).This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.celrep.2015.11.04

    SOX4 can redirect TGF-β-mediated SMAD3-transcriptional output in a context-dependent manner to promote tumorigenesis.

    Get PDF
    Expression of the transcription factor SOX4 is often elevated in human cancers, where it generally correlates with tumor-progression and poor-disease outcome. Reduction of SOX4 expression results in both diminished tumor-incidence and metastasis. In breast cancer, TGF-β-mediated induction of SOX4 has been shown to contribute to epithelial-to-mesenchymal transition (EMT), which controls pro-metastatic events. Here, we identify SMAD3 as a novel, functionally relevant SOX4 interaction partner. Genome-wide analysis showed that SOX4 and SMAD3 co-occupy a large number of genomic loci in a cell-type specific manner. Moreover, SOX4 expression was required for TGF-β-mediated induction of a subset of SMAD3/SOX4-co-bound genes regulating migration and extracellular matrix-associated processes, and correlating with poor-prognosis. These findings identify SOX4 as an important SMAD3 co-factor controlling transcription of pro-metastatic genes and context-dependent shaping of the cellular response to TGF-β. Targeted disruption of the interaction between these factors may have the potential to disrupt pro-oncogenic TGF-β signaling, thereby impairing tumorigenesis

    DNA methylation landscapes of 1538 breast cancers reveal a replication-linked clock, epigenomic instability and cis-regulation.

    Get PDF
    DNA methylation is aberrant in cancer, but the dynamics, regulatory role and clinical implications of such epigenetic changes are still poorly understood. Here, reduced representation bisulfite sequencing (RRBS) profiles of 1538 breast tumors and 244 normal breast tissues from the METABRIC cohort are reported, facilitating detailed analysis of DNA methylation within a rich context of genomic, transcriptional, and clinical data. Tumor methylation from immune and stromal signatures are deconvoluted leading to the discovery of a tumor replication-linked clock with genome-wide methylation loss in non-CpG island sites. Unexpectedly, methylation in most tumor CpG islands follows two replication-independent processes of gain (MG) or loss (ML) that we term epigenomic instability. Epigenomic instability is correlated with tumor grade and stage, TP53 mutations and poorer prognosis. After controlling for these global trans-acting trends, as well as for X-linked dosage compensation effects, cis-specific methylation and expression correlations are uncovered at hundreds of promoters and over a thousand distal elements. Some of these targeted known tumor suppressors and oncogenes. In conclusion, this study demonstrates that global epigenetic instability can erode cancer methylomes and expose them to localized methylation aberrations in-cis resulting in transcriptional changes seen in tumors

    A Biobank of Breast Cancer Explants with Preserved Intra-tumor Heterogeneity to Screen Anticancer Compounds.

    Get PDF
    The inter- and intra-tumor heterogeneity of breast cancer needs to be adequately captured in pre-clinical models. We have created a large collection of breast cancer patient-derived tumor xenografts (PDTXs), in which the morphological and molecular characteristics of the originating tumor are preserved through passaging in the mouse. An integrated platform combining in vivo maintenance of these PDTXs along with short-term cultures of PDTX-derived tumor cells (PDTCs) was optimized. Remarkably, the intra-tumor genomic clonal architecture present in the originating breast cancers was mostly preserved upon serial passaging in xenografts and in short-term cultured PDTCs. We assessed drug responses in PDTCs on a high-throughput platform and validated several ex vivo responses in vivo. The biobank represents a powerful resource for pre-clinical breast cancer pharmacogenomic studies (http://caldaslab.cruk.cam.ac.uk/bcape), including identification of biomarkers of response or resistance.This research was supported with funding from Cancer Research UK and from the European Union to the EUROCAN Network of Excellence (FP7; grant numnumber 260791). M.C. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sk1odowska-Curie grant agreement no. 660060 and was supported by the Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. R.N.B. is supported by the Wellcome Trust PhD Programme in Mathematical Genomics and Medicine. S-J.S. is supported by the Wellcome Trust PhD Programme for Clinicians in Cambridge. A.Bruna, O.M.R., E.M., V.S., and C.C. are members of the EurOPDX Consortium. Weare very grateful for the generosity of all the patients that donated samples for implantation. We are also deeply indebted to all the staff (surgeons, pathologists, oncologists, theatre staff, and other ancillary personnel) at the Cambridge Breast Unit, Cambridge University Hospital NHS Foundation Trust, for facilitating the timely collection of samples. We thank the Cancer Research UK Cambridge Institute Genomics, Bioinformatics, Histopathology, Flow Cytometry, Biological Resource, and Bio-repository Core Facilities for support during the execution of this project.This is the final version of the article. It first appeared from Elsevier at http://dx.doi.org/10.1016/j.cell.2016.08.041

    Global transcriptional analysis identifies a novel role for SOX4 in tumor-induced angiogenesis.

    Get PDF
    The expression of the transcription factor SOX4 is increased in many human cancers, however, the pro-oncogenic capacity of SOX4 can vary greatly depending on the type of tumor. Both the contextual nature and the mechanisms underlying the pro-oncogenic SOX4 response remain unexplored. Here, we demonstrate that in mammary tumorigenesis, the SOX4 transcriptional network is dictated by the epigenome and is enriched for pro-angiogenic processes. We show that SOX4 directly regulates endothelin-1 (ET-1) expression and can thereby promote tumor-induced angiogenesis both in vitro and in vivo. Furthermore, in breast tumors, SOX4 expression correlates with blood vessel density and size, and predicts poor-prognosis in patients with breast cancer. Our data provide novel mechanistic insights into context-dependent SOX4 target gene selection, and uncover a novel pro-oncogenic role for this transcription factor in promoting tumor-induced angiogenesis. These findings establish a key role for SOX4 in promoting metastasis through exploiting diverse pro-tumorigenic pathways

    SOX4 can redirect TGF-β-mediated SMAD3-transcriptional output in a context-dependent manner to promote tumorigenesis

    No full text
    Expression of the transcription factor SOX4 is often elevated in human cancers, where it generally correlates with tumor-progression and poor-disease outcome. Reduction of SOX4 expression results in both diminished tumor-incidence and metastasis. In breast cancer, TGF--mediated induction of SOX4 has been shown to contribute to epithelial-to-mesenchymal transition (EMT), which controls pro-metastatic events. Here, we identify SMAD3 as a novel, functionally relevant SOX4 interaction partner. Genome-wide analysis showed that SOX4 and SMAD3 co-occupy a large number of genomic loci in a cell-type specific manner. Moreover, SOX4 expression was required for TGF--mediated induction of a subset of SMAD3/SOX4-co-bound genes regulating migration and extracellular matrix-associated processes, and correlating with poor-prognosis. These findings identify SOX4 as an important SMAD3 co-factor controlling transcription of pro-metastatic genes and context-dependent shaping of the cellular response to TGF-. Targeted disruption of the interaction between these factors may have the potential to disrupt pro-oncogenic TGF- signaling, thereby impairing tumorigenesis

    SOX4 can redirect TGF-β-mediated SMAD3-transcriptional output in a context-dependent manner to promote tumorigenesis

    No full text
    Expression of the transcription factor SOX4 is often elevated in human cancers, where it generally correlates with tumor-progression and poor-disease outcome. Reduction of SOX4 expression results in both diminished tumor-incidence and metastasis. In breast cancer, TGF--mediated induction of SOX4 has been shown to contribute to epithelial-to-mesenchymal transition (EMT), which controls pro-metastatic events. Here, we identify SMAD3 as a novel, functionally relevant SOX4 interaction partner. Genome-wide analysis showed that SOX4 and SMAD3 co-occupy a large number of genomic loci in a cell-type specific manner. Moreover, SOX4 expression was required for TGF--mediated induction of a subset of SMAD3/SOX4-co-bound genes regulating migration and extracellular matrix-associated processes, and correlating with poor-prognosis. These findings identify SOX4 as an important SMAD3 co-factor controlling transcription of pro-metastatic genes and context-dependent shaping of the cellular response to TGF-. Targeted disruption of the interaction between these factors may have the potential to disrupt pro-oncogenic TGF- signaling, thereby impairing tumorigenesis

    Global transcriptional analysis identifies a novel role for SOX4 in tumor-induced angiogenesis

    No full text
    The expression of the transcription factor SOX4 is increased in many human cancers, however, the pro-oncogenic capacity of SOX4 can vary greatly depending on the type of tumor. Both the contextual nature and the mechanisms underlying the pro-oncogenic SOX4 response remain unexplored. Here, we demonstrate that in mammary tumorigenesis, the SOX4 transcriptional network is dictated by the epigenome and is enriched for pro-angiogenic processes. We show that SOX4 directly regulates endothelin-1 (ET-1) expression and can thereby promote tumor-induced angiogenesis both in vitro and in vivo. Furthermore, in breast tumors, SOX4 expression correlates with blood vessel density and size, and predicts poor-prognosis in patients with breast cancer. Our data provide novel mechanistic insights into context-dependent SOX4 target gene selection, and uncover a novel pro-oncogenic role for this transcription factor in promoting tumor-induced angiogenesis. These findings establish a key role for SOX4 in promoting metastasis through exploiting diverse pro-tumorigenic pathways
    corecore