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SUMMARY

The inter- and intra-tumor heterogeneity of breast
cancer needs to be adequately captured in pre-clin-
ical models. We have created a large collection of
breast cancer patient-derived tumor xenografts
(PDTXs), in which the morphological and molecular
characteristics of the originating tumor are preserved
through passaging in the mouse. An integrated plat-
form combining in vivo maintenance of these PDTXs
along with short-term cultures of PDTX-derived tu-
mor cells (PDTCs) was optimized. Remarkably, the
intra-tumor genomic clonal architecture present in
the originating breast cancers was mostly preserved
upon serial passaging in xenografts and in short-
term cultured PDTCs. We assessed drug responses
in PDTCs on a high-throughput platform and vali-
dated several ex vivo responses in vivo. The biobank
represents a powerful resource for pre-clinical breast
cancer pharmacogenomic studies (http://caldaslab.
cruk.cam.ac.uk/bcape), including identification of
biomarkers of response or resistance.

INTRODUCTION

Molecular stratification is the first step toward precision cancer

medicine (Aparicio and Caldas, 2013). Recently, we reported
260 Cell 167, 260–274, September 22, 2016 ª 2016 The Authors. Pu
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and validated (Ali et al., 2014) a genome driver-based molecular

taxonomy of breast cancer. Modeling this diverse inter-tumor

heterogeneity of breast cancer is challenging and requires gen-

eration of explant models representing the ten identified integra-

tive clusters (IntClust).

Cancer cell lines have been extensively used for drug develop-

ment and biomarker discovery (Heiser et al., 2012) but are

successful at predicting clinical responses in only a handful of

examples (Kim et al., 2015; Sharma et al., 2010). The modest

clinical predictive value of cancer cell lines results from their

recognized shortcomings: limited capacity to recapitulate inter-

and intra-tumor heterogeneity and adaptation to growth in

artificial conditions. These limitations are significant because

both tumor subtype and cancer genome evolution, resulting in

intra-tumor heterogeneity, remain the main challenges to suc-

cessful cancer treatment.

The increasing understanding of cancer biology has led to the

availability of targeted therapies. These drugs typically explore

oncogene addiction or synthetic lethality (Kaelin, 2005; Luo

et al., 2009; Torti and Trusolino, 2011). Unfortunately, the

inherent heterogeneity of cancermeans that either primary or ac-

quired resistance nearly always occurs. Successful early drug

development hence requiresmolecular stratification and charac-

terization of intra-tumor heterogeneity.

Patient-derived tumor xenografts (PDTXs) have emerged as

powerful pre-clinical models to recapitulate the diversity of hu-

man tumors (Cassidy et al., 2015). The greatest promise of

PDTXs is their potential to improve the rates of attrition in cancer
blished by Elsevier Inc.
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drug development (Aparicio et al., 2015; Gao et al., 2015;

Hidalgo et al., 2014; Tentler et al., 2012). However, generalized

use of PDTXs in high-throughput drug studies is unrealistic, for

both cost and animal welfare reasons. Moreover, it has not

been clear whether PDTXs retain the heterogeneity of the original

tumor. Here, we demonstrate molecularly characterized PDTXs

and their matched PDTX-derived tumor cells (PDTCs) in short-

term culture do retain this heterogeneity and may be used as a

platform for cancer drug screening with the potential to uncover

molecular mechanisms of therapy response.

RESULTS

Generation of Breast Cancer PDTXs Representing Most
Breast Cancer Clinical and Molecular Subtypes
We have established a large bank (n = 83) of live human breast

cancer explants by implantation of tumor samples in highly

immunodeficient mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ or

NSGs; see STAR Methods). Comprehensive clinical information

on the patients and originating cancer sample implanted to

generate PDTXs can be found in Table S1. To date, PDTXs

have been successfully established from both primary (n = 46)

and metastatic (n = 37) sites, and more than 50% (n = 50) are

from ER+ disease (Table S1). The PDTX growth rates upon initial

engraftment and after subsequent re-implantation were variable

across models, remained mostly stable upon serial engraftment,

and tended to be faster in explants originated from ER� tumors

(Figure 1A shows data for 31 models). Importantly, all estab-

lished models tested to date could be flash frozen and subse-

quently successfully engrafted, ensuring the persistence of the

living biobank.

In order to be classified into one of the IntClust using the

method we described (Ali et al., 2014), the PDTXs were subject

to copy number profiling, by shallow whole-genome sequencing

(‘‘sWGS’’), and expression profiling, by microarrays (‘‘RNAexp’’).

The copy number profiles of PDTXs classified into each IntClust

were similar to those reported in primary tumors (Curtis et al.,

2012; Figure S1A). The goodness of fit scores of IntClust

assignment were computed (for IntClusts with more than one

xenograft model: IntClust1; IntClust3; IntClust4; IntClust5;

IntClust6; IntClust9; and IntClust10), and with one exception

(IntClust3), these scores were very similar to classifying primary

tumors (Figure S1B).

Copy number aberrations (CNAs) in known breast cancer

driver genes (Curtis et al., 2012) present in the PDTXs included

gains/amplifications of MYC (78%), CCNE1 (34%), ZNF703

(25%), CCND1 (31%), MDM2 (25%), and ERBB2 (9%) and

deletions of PTEN (41%), PPP2R2A (72%), CDKN2A (47%),

and CDKN2B (47%). This CNA frequency distribution is

different from that seen in a breast cancer clinical population

(METABRIC dataset) and reflects both the origin of the

PDTXs (around 45% were from metastatic biopsies) and the

disproportionate engraftment of triple-negative basal-like can-

cers (IntClust10) and more-aggressive subtypes of ER+ tumors

(IntClust1 and IntClust9; Figure 1B). In contrast, we observed

lower engraftment of ER+ tumors from better-outcome sub-

types (IntClust3, IntClust4, IntClust7, and IntClust8; Figure 1B;

Table S1).
Downstream analysis of mRNA expression data using the

gene set variation analysis (GSVA) approach (Hänzelmann

et al., 2013), a method to estimate pathway activity, also showed

that the diversity of activity scores in cancer-related pathways

(Molecular Signatures Database; http://software.broadinstitute.

org/gsea/msigdb; Liberzon et al., 2011) in PDTXs was similar

to that observed in the breast cancer clinical population (Fig-

ure S1C). Furthermore, in matched pairs, the activity of breast-

cancer-related pathways (e.g., PTEN, Tp53, BRCA1, Her2, and

Cyclin D1) in the PDTXs was correlated with and predicted

the activity scores in the originating breast cancer samples

(Figure S1D).

The subtype distribution of engrafted PDTXs was also re-

flected by the mutation frequencies identified using whole-

exome sequencing (‘‘WES’’). The most-commonly mutated

genes in ER� breast cancers (Cancer Genome Atlas Network,

2012) were mutated at similar frequencies in ER� PDTXs (Fig-

ure 1C). In contrast, frequencies of mutated genes in ER+ PDTXs

mirrored those found in more-aggressive subtypes of ER+ tu-

mors (Pereira et al., 2016). As an example, PIK3CA mutations

were found in only 27% of ER+ PDTX models (Figure 1C),

compared to 46% and 38% in the METABRIC and The Cancer

Genome Atlas (TCGA) cohorts, respectively.

In summary, these data show that we have successfully gener-

ated a living biobank of breast cancer xenografts, representing

the clinical and molecular diversity of the disease.

PDTXs Retain Their Original Histological and Molecular
Features through Passaging
Histologically, PDTXs (23 models analyzed) showed similar

morphology to the originating tumor; tubule formation and

associated stroma were present in the xenograft, as seen in

the matched patient cancer sample (Figure S2A). Histological

review of multiple PDTX passages (Table S2) revealed that

tumor tissue morphology remained stable with serial engraft-

ment. Analysis of immunohistochemistry for epithelial markers

(CK5, CK8, CK14, CK18, E-cadherin, and epithelial specific

antigen) and for clinical biomarkers (ER, PR, Her2, Ki67, and

p53) showed these features were similar in matched pairs of

PDTX model and originating breast cancer sample and were

consistently retained with passaging (Figure S2A and Table

S2 for summary of the data).

The PDTX samples were comprehensively molecularly char-

acterized at several passages using sWGS (for CNAs), WES

(for single nucleotide variations [SNVs]), reduced-representation

bisulfite sequencing (‘‘RRBS’’) (for DNA methylation), and

RNAexp (for global expression and pathway activity profiling).

The analysis of sequencing data from PDTX samples is

complicated by the presence of a variable and unknown amount

of mouse cells. To address this, a serial dilution series of control

samples with known mixtures of human and mouse DNA was

created to develop a robust computational pipeline to discrimi-

nate human andmouse readswith an accuracy >99.9% (see Fig-

ure S2B and STAR Methods for details). This pipeline identified

three spontaneous mouse tumors arising at or near the implan-

tation site, which were discarded from further experiments.

Post-filtered aligned data from this pipeline were used for so-

matic copy number and mutation calling (see STAR Methods).
Cell 167, 260–274, September 22, 2016 261
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Figure 1. Derivation of an Extensively Anno-

tated Breast Cancer PDTX-PDTC Biobank

Representing Breast Cancer Subtypes

(A) Timeline of engraftment for established PDTX

models (n = 31; ER+ in red; ER� in blue). Each

square represents a time point of engraftment.

Average ER+ and ER� re-implantation time is

shown on furthermost right panel. Model IDs

are color coded according to integrative cluster

(IntClust).

(B) Bar plots showing the IntClust distribution of

PDTX models (n = 40; shadowed) and for com-

parison primary breast cancers from METABRIC

(n = 1,980; dense).

(C) Distribution of somatic mutations in tumors

from the TCGA cohort (n = 495) and PDTX models

(n = 30), stratified by ER status.

See also Figure S1.
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We used these data to determine how implantation, serial

passaging, and replicate engraftment affected gene expression,

cancer pathway activation scores, allelic fractions of somatic

mutations, CNAs, and DNA methylation. This analysis, done

also for comparison in reference sets (different tumor samples

and technical and biological replicates), revealed a high degree

of correlation in matched sample pairs for all data types

(Figure 2A).

The biological relevance of the models was evidenced by

similar gene expression profiles between the originating tumor

and the PDTX (RNAexp n = 44; r = 0.95; interquartile range

[IQR] 0.94–0.97), oncogenic pathway scores (r = 0.67; IQR

0.44–0.79), CNA profiles (sWGS n = 45; r = 0.91; IQR 0.84–

0.93), SNV allelic fractions (WES n = 82; r = 0.81; IQR 0.74–

0.88), and DNA methylation profiles (RRBS n = 8; r = 0.82; IQR

0.79–0.84). The biological robustness of themodels across serial

passaging was also remarkable, with retention of gene expres-

sion profiles (RNAexp n = 217; r = 0.98; IQR 0.97–0.99), onco-

genic pathway scores (r = 0.87; IQR 0.80–0.93), CNA profiles

(sWGS n = 109; r = 0.97; IQR 0.92–0.98), SNV allelic fractions

(WES n = 201; r = 0.92; IQR 0.87–0.95), and DNA methylation

profiles (RRBS n = 37; r = 0.82; IQR 0.78–0.90; Figure 2A). Muta-

tional signatures (Alexandrov et al., 2013; Rosenthal et al., 2016)

in matched PDTXs across serial passages and the originating

sample were also conserved (Figure 2B). Representative exam-

ples across the molecular data types for individual PDTX models

are shown in Figure 2B.

In summary, the comprehensive characterization of histopath-

ological characteristics, somatic genomic aberrations (CNAs

and SNVs), methylation profiles, and gene expression of the bio-

bank of human breast cancer explants confirms these models

have a remarkable level of multi-dimensional molecular resem-

blance with their matched cancer of origin, significantly extend-

ing the observations we and others had previously reported

(DeRose et al., 2011; Eirew et al., 2015; Li et al., 2013; Marangoni

et al., 2007). Our findings robustly demonstrate these multi-

dimensional molecular features are conserved through serial

engraftment in the mouse.

Mouse Stromal Composition of PDTXs Remains Stable
through Passaging
Breast cancer PDTXs retain similar architecture to the origi-

nating tumor and, through passaging, this remains stable.

This occurs despite mouse stroma replacing the human stroma

(DeRose et al., 2011; Hidalgo et al., 2014). We used the custom

sequencing analysis pipeline described above (Figure S2B;

STAR Methods) to deconvolute the proportion of mouse DNA

sequences in PDTX samples as a surrogate for mouse

stromal cell content. Out of the 94 xenograft samples exam-

ined, only five had more than 40% mouse cells. Replicates ob-

tained from these five had lower mouse stromal content,

reflecting intra-PDTX heterogeneity (Figure S2C). The data

from multiple PDTX models also showed the proportion of

mouse content does not change significantly across passages

(Figure S2C). Two independent methods were used to validate

these observations: fluorescence-activated cell sorting (FACS)

of PDTX-derived single-cell suspensions with an MHC-class I

anti-mouse H-2Kb/H-2Db antibody and fluorescence in situ
hybridization (FISH) with mouse and human centromeric

probes in tissue sections (Lawson et al., 2015; Li et al., 2013;

Figure S2D).

In summary, these data show the mouse stroma contribution

to the xenografts is stable across serial passaging.

Intra-tumor Heterogeneity and Clonal Architecture Are
Maintained in PDTXs
Human breast cancers are composed of clones differing in

mutation content (Aparicio and Caldas, 2013), resulting in

intra-tumor genomic heterogeneity. This intra-tumor heteroge-

neity, although variable across tumors, is already present at

diagnosis (Shah et al., 2012) and evolves dynamically in space

and time (Ding et al., 2010; Murtaza et al., 2015; Shah et al.,

2009).

WES data were used to interrogate both intra-tumor heteroge-

neity and clonal architecture in matched originating tumor, initial

engrafted, and serially passaged xenografts.

Quantification of intra-tumor heterogeneity using the mutant-

allele tumor heterogeneity (MATH) method (Mroz and Rocco,

2013) revealed that the originating patient tumor samples had

a range of scores (from low to high), as expected given their

diverse IntClust subtype. The heterogeneity scores in multiple

passages of matched PDTXs were similar, demonstrating ex-

plants preserve intra-tumor heterogeneity (Figure S3A).

Clonal architecture in individual samples and clonal dy-

namics upon engraftment and across serial passaging were

assessed on 104 samples from 22 models using PyClone

(Roth et al., 2014), as we recently described (Eirew et al.,

2015). PyClone identified 190 clonal clusters across the sam-

ples analyzed, but only 38 clonal clusters (20%) had significant

changes in cellular prevalence estimates (Table S3 for

extended information from PyClone analysis in all models

tested). Clonal selection was seen upon initial engraftment

(average change in clonal prevalence 0.21) but minimal through

serial transplantation (average change in clonal prevalence

0.07; Figure S3B). We next asked whether clonal clusters

showing engraftment-associated dynamics were enriched for

cancer drivers. Recently, our group used a ratiometric method

(Vogelstein et al., 2013) to identify 40 breast cancer mutation

driver genes in 2,433 breast cancers (Pereira et al., 2016).

Remarkably, in only 4 of the 38 clonal clusters that changed

significantly after engraftment or during passaging could we

identify a mutation driver: BAP1 in STG139 (cluster 12);

KDM6A in HCI004 (cluster 3); MAP3K1 in STG143 (cluster 3);

and PIK3CA in HCI008 (cluster 2; Table S3). These data

strongly suggest that most of the clonal dynamics within xeno-

grafts are not associated with known driver genes. Figure 3A

shows examples both of individual clonal cluster plots and of

variant allele frequency distributions for individual genes within

these clusters. Figure S3C shows all individual clonal cluster

plots generated from the 22 models analyzed to illustrate the

full diversity of clonal architectures observed in the PDTX

biobank.

We analyzed in detail the clonal architecture of two cases

for which we had both primary and subsequent metastasis

samples: STG139 and a lung metastasis 12 months later,

STG139M, and AB521 and a liver metastasis 8 months later,
Cell 167, 260–274, September 22, 2016 263



Figure 2. PDTXs Closely Match Originating Patient Cancer Samples

(A) Heatmap of Pearson correlation scores across molecular data types (different sample sizes described in the main text).

(B) Panels with individual examples for five types of molecular data. (Left panel: top) CNA plots for AB551 (originating sample [T], PDTX, and PDTC) are shown;

(bottom) scatterplot of methylated CpGs (from RRBS data) in AB521M is shown. (Right panel: top) Scatterplots of pathway activity scores in AB521M are shown.

(Middle) Scatterplots of variant allelic fractions in STG139 are shown. (Bottom) Mutational profiles in AB551 are shown.
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AB521M. For the first patient, we generated a xenograft from the

primary tumor (STG139-X) and a xenograft from the lung metas-

tasis (STG139M-X), and for the second patient, we generated a

xenograft from the liver metastasis (AB521M-X). Figure 3B

shows the clonal cluster plots and a heatmap of variant allele

frequencies derived from WES data for sample sets from both

patients. Clonal clusters shared by both the originating primary

tumor and metastatic samples (STG139: clonal clusters 1, 7,

and 8; AB521: clonal clusters 2, 8, and 10) had stable

cellular prevalence across passaging. These clusters contained

around 80% of all SNVs detected in these two cases (Fig-

ure 3B) and included not only the stem or truncal cluster but

significantly also included sub-clonal and even very minor clus-

ters (estimated cellular prevalence <5%). Metastasis-only clonal

clusters (STG139: cluster 4; AB521: cluster 7) were also pre-

served upon serial passaging. Finally, there were clusters de-

tected only in engrafted-derived samples (clonal clusters 3, 11,

and 12 in STG139 and 6 in AB521, respectively). Although these

results need a degree of cautious interpretation (only two cases

analyzed), it demonstrates that both originating tumor and xeno-

grafts contain multiple clones, and the dynamics of clones in the

patient (by comparing primary and metastasis biopsies) and in

the mouse (by comparing passages) have both similarities and

differences. Detailed analyses of clonal dynamics in more

matched primary metastatic samples and their derived PDTXs,

with mirrored treatment regimes, will be extremely informative

toward understanding the mechanisms that are operative in tu-

mor clonal ecosystems (Heppner, 1984; Tabassum and Polyak,

2015).

From one large breast cancer brain metastasis (CAMBMT1),

we obtained five spatially separate biopsies, which were im-

planted into five different NSG mice. WES data from all five

biopsies showed similar clonal architectures (Figure 3C, left

panel; Table S3). This case allowed us to compare the clonal

architecture of the five xenografted samples, revealing remark-

able similarity, despite some variation in the originating cellular

prevalence in the separate biopsies (see, for example, variant

allele frequencies of GATA3, OTOGL, and BTD; Figure 3C, right

panel). These near identical clonal dynamics upon engraftment

strongly suggest deterministic mechanisms operate on clonal

selection and validate our previous hypothesis that specific mu-

tations act as genetic markers of fitness and dictate evolutionary

trajectories (Eirew et al., 2015).

In summary, these data show PDTXs constitute a pre-clinical

model that captures themost-clinically relevant feature in human

cancer: heterogeneous genomic architecture that dynamically

evolves. Moreover, the data also indicate that the clonal dy-
Figure 3. Clonal Architecture and Clonal Dynamics of Breast Cancer P

(A) Example plots of AB551 (left panel), HCI002 (middle panel), and STG282 (right p

in originating patient samples (T) and subsequent xenograft passages (Xn; n for pa

used to infer clusters and cellular prevalence using WES data. Line widths indicat

adjacent to each plot). Asterisks indicate clonal clusters with significant change

quency for selected genes within clusters.

(B) PyClone plots (as in A) and cellular prevalence heatmap plots for STG139 an

(C) PyClone plot and plots of distribution of variant allele frequency for selected

matched xenografts in CAMBMT1.

See also Figure S3.
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namics of the derived and serially passaged explants are not

stochastic.

Generation of Short-Term Cultures of PDTCs
The PDTXs described constitute a living biobank of breast

cancer explants that retain through passaging the inter- and

intra-tumor heterogeneity encountered in the clinic.We therefore

developed a method to enable the use of this valuable resource

for high-content pre-clinical drug screening, similar to the

approach widely used with cell lines (Barretina et al., 2012; Gar-

nett et al., 2012). The method involved optimizing short ex vivo

culture of cells isolated from the PDTXs (named PDTCs). These

short-term PDTC cultures were successfully generated from all

models where attempted (n = 27, at least two different passages

from each; Figure S4A; see STAR Methods).

Sequencing data confirmed that the PDTCs had a proportion

of mouse-derived cells similar to that found in the originating

PDTX (Figure S4B). Cell proliferation, cell viability, and cell

divisions (measured by PKH26 assay) were analyzed in the cul-

tures and showed the expected variability across models, re-

flecting the diversity of the originating cancer (Figures S4C

and S4D).

PDTCs derived from ten of the PDTX models were extensively

characterized usingWES, sWGS, and RNAexp. Analysis of these

data showed the short ex-vivo-cultured PDTCs retained the mo-

lecular features of the originating PDTX (Figures 2A and 2B),

including similar clonal architecture (Figures 3A, S3B, and S3C;

Table S3). The average absolute change in clonal cluster cellular

prevalence in matched PDTC-PDTX pairs was 0.08 (Figure S3B,

left panel).

In summary, PDTCs can be systematically and consistently

generated fromPDTXs and retain their genomic features,making

them an excellent model system for high-throughput drug

screens.

High-Throughput Drug Screening in PDTC Models
We tested the use of PDTCs as a pre-clinical drug-screening

platform with an approach similar to that which we previously re-

ported for cell lines and organoids (Garnett et al., 2012; van de

Wetering et al., 2015). A selection of 22 different PDTX models

were plated as PDTCs and 24 hr later screened with 108 com-

pounds, representing a total of 6,634 drug tests performed

(see STAR Methods). The compounds used were either

approved cancer treatments or drugs targeting key cancer path-

ways (Table S4). The effect of drug treatment on cell viability was

determined by CellTiter-Glo (CTG) (Garnett et al., 2012; van de

Wetering et al., 2015) and drug responses represented by
DTXs

anel). (Left graph) The mean cellular prevalence estimates of mutation clusters

ssage number) or PDTCs (XnCy; y for days in culture) are shown. PyClone was

e the number of SNVs comprising each mutation cluster (numbers in brackets

s in cellular prevalence. (Right graph) Plots of distribution of variant allele fre-

d AB521 samples.

genes within clusters (as in A) of five spatially separated biopsies and their
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(1) the half-maximal inhibitory concentration (IC50), (2) the dose-

response curve, and (3) the area under the dose response curve

(AUC). In total, 2,550 drug-PDTC combinations were tested, with

a range of 5–20 (mean = 16) PDTC models screened per drug.

For most models, the drug treatment was performed in at least

three technical replicates (same model, same passage, and

same mouse) and in two or three biological replicates (same

model, different passage).

One significant limitation of these analyses is that these mea-

surements (IC50 and AUC) did not account for cell division rates

across the different PDTCmodels. Growth rate inhibition metrics

have recently been shown to provide more-reliable measure-

ments of sensitivity to cancer drugs (Hafner et al., 2016). Never-

theless, we have been able to make several observations that

attest to the value of the drug screening results obtained despite

this caveat.

First, the observed AUC values across all drugs and models

tested were highly correlated across technical (Pearson correla-

tion of 0.94) and biological replicates (Pearson correlation of

0.78; Figure 4A). These results are highly similar to those we pre-

viously reported in established cell lines or tumor organoids (Gar-

nett et al., 2012; van de Wetering et al., 2015). To further verify

the robustness of these in vitro drug response data, we tested

in eight PDTC models a set of 19 drugs using CyQUANT and

Sytox endpoint assays, in addition to CTG (see STAR Methods).

The results of these experiments revealed highly correlated

drug responses independently of the assay used (Figure S4E;

Table S5).

Second, analysis of AUC data for compounds targeting the

same pathway or with similar mechanism of action showed

highly correlated response profiles. One example with inhibitors

of the PI3K-AKT-mTOR pathway (NVP-BEZ235/dactolisib,

AZD8055, GDC0941/pictilisib, AKT inhibitor, and MK-2206) is

shown in Figure 4B. Another example with compounds targeting

homologous recombination repair defects (PARP inhibitor BMN-

673/talazoparib and cisplatin, a DNA cross-linking agent) is

shown in Figure 4C.

Distinct PDTC models can sometimes share the same IC50

and AUC values for a compound and have very different dose-

response curves. Hence, a new method, based on the pattern

of the slope of the dose-response curve, was developed to clas-

sify drug sensitivity patterns into eight groups (see STAR

Methods). Figure S5A shows for each compound the proportion

of drug responses classified into each of the eight drug sensi-

tivity patterns across all models tested with that drug. Clustering

of drug sensitivity patterns (Figure S5B) confirmed the high

reproducibility and biological robustness of the data: different

passages of the samemodel and compounds with similar mech-

anisms of action and target specificities clustered together.
Figure 4. High-Throughput Drug Screening Using PDTCs

(A) AUCs scatterplots showing reproducibility of PDTC drug testing. (Left panel)

shown. (Right plot) AUCs of biological replicates (n = 1,341; same model, differe

(B) AUC scatterplots of all drugs targeting PI3K/AKT/mTOR pathway (n = 34 pas

(C) AUC scatterplot for cisplatin and BMN-673 treatment across models tested (

(D) Illustration of the PI3K pathway with panels depicting difference in the AUC in

(Left panels) Inhibitors of PI3K alpha and PI3Kbeta are shown. (Right panels) Inh

See also Figures S4, S5, and S6.
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Third, we explored whether the combined analysis of PDTC

drug responses and molecular data recapitulated known mech-

anisms of drug sensitivity and resistance. For example, sensi-

tivity to the EGFR/ERBB2 inhibitor BIBW2992 (afatinib) was

seen in two of the three Her2+models tested (Figure S6A). Sensi-

tivity to PARP inhibition (Drew et al., 2011) was seen in a model

with somatic BRCA1 promoter methylation and consequent

lack of expression (STG201) and in a model from a patient with

a germline-truncating BRCA1 mutation (VHIO124; Figures S6B

and S6C; Table S6, and Figure 6 for ex vivo and in vivo data,

respectively). Interestingly, two models from BRCA1 germline

mutation carriers were resistant to PARP inhibitors, and these

had inactivating mutations of 53BP1 (STG316: c.134+3A > C)

and MAD2L2 (VHIO179: c.66_67delAG; Table S6; Figure 6).

Resistance to PARP inhibitors due to loss of non-homologous

end-joining (NHEJ) has been previously reported for both

53BP1 (Bouwman et al., 2010; Bunting et al., 2010; Chapman

et al., 2012) and MAD2L2 (Boersma et al., 2015; Xu et al.,

2015). These data therefore further demonstrate breast cancer

explants recapitulate knownmechanisms of both drug sensitivity

and resistance.

Finally, we explored multiple layers of molecular data in the

context of PI3K pathway inhibition. In Figure 4D, we present a

schematic of the PI3K-AKT-mTOR pathway to illustrate the

complexity of the associations. Sensitivity to the PI3Ka inhibitor

GDC00941 (pictilisib) was seen in models with PIK3CA-acti-

vating mutations (3/15), PTEN loss (5/15), INPP4B loss (2/15),

high p-AKT levels (4/15), or a combination of these features

(Table S6). The difference in response (measured by AUC) to

pathway inhibitors was compared in the presence or absence

of a biomarker in the pathway (based on expression, SNVs,

CNAs, or promoter methylation). This showed models with

mutant versus wild-type PIK3CA responded better to PI3Ka

and AKT inhibitors, but not to mTOR and PI3Kb inhibitors. We

did a similar analysis for JQ1, a BET inhibitor recently tested in

breast cancer models (Shu et al., 2016). We tested 19 models,

and seven were JQ1 sensitive, including 4/7 ER+ (IntClust1 [3]

and IntClust10 [1]) and 3/12 ER� (IntClust10 [2] and IntClust9

[1]; Table S6).

These data highlight the heterogeneous nature of single

biomarker/drug-response associations in breast cancer and

suggest integrative analysis of molecular and drug response

data are more informative. Further improvements are expected

in the future using new drug-response metrics that are insensi-

tive to cell division rates.

Use of PDTCs to Test Drug-Drug Combinations
Combination therapy is increasingly being used as an approach

to combat development of resistance in cancer treatment. To
AUCs of technical replicates (n = 6,325; same sample, same compound) are

nt passages, same compound) are shown. r, Pearson correlation.

sages from 20 models). Red indicates Pearson correlation > 0.5.

n = 15).

models (n = 15) with versus without molecular alteration in pathway member.

ibitors of AKT1 and mTOR are shown.
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test the use of PDTC models in high-throughput drug-drug

combination assays, we designed a 5 3 5 matrix with standard

of care chemotherapy agents (cisplatin and paclitaxel) and six

clinically relevant targeted compounds (Figure S7A). Single-

agent drug responses in these drug-drug combination assays

were highly correlated with those obtained from the 108 individ-

ual compound screen (Pearson correlation 0.84), further con-

firming the robust and reproducible performance of our

PDTX/PDTC platform (Figure S7B). The Bliss model (see

STAR Methods), an approach that does not require precise

estimates of IC50s, was used to compute synergy and antago-

nism. The performance of the Bliss model was validated by

showing in a Her2-positive model (HCI008) synergy of an

Hsp90 inhibitor (17-AAG or tanespimycin) in combination with

paclitaxel, which has been previously reported (Modi et al.,

2011; Figure 5A). The testing of pairwise combinations using

the six targeted compounds (Figure S7A) confirmed the ratio-

nally predicted synergistic effects of combining an IGFR1/

INSR1 inhibitor (BMS-754807) with a dual PI3K/mTOR in-

hibitor (NVP-BEZ235) or an EGFR inhibitor (gefitinib/Iressa;

Figure 5B).

In summary, these data show that PDTCs can be successfully

used to test drug-drug combinations.

PDTCTesting Predicts In Vivo Drug Responses in PDTXs
We next tested whether PDTC drug responses ex vivo predict

responses in vivo in a series of pre-clinical trials using PDTXs

as xenopatients. This step was crucial to validate the utility of

the platform reported here, given that PDTXs have recently

been shown to predict human clinical trial drug responses

(Gao et al., 2015). We selected 40 ex vivo PDTC drug re-

sponses tested in eight different models for in vivo validation.

Significantly, even though different compounds with the same

specificity had sometimes to be used in PDTXs (for formulation

or bioavailability reasons), 33 out of 40 (82.5%) ex vivo drug

responses were recapitulated in vivo (Figure 6 for examples;

Table S7 for details on all ex vivo and in vivo drug tests per-

formed). This included validation of responses in vivo for

PI3K-AKT-mTOR pathway, ER, PARP, Wee1, and IGFR1 inhib-

itors (Figure 6A; Table S7). We also validated in vivo the pre-

dicted synergistic combinations of PI3K plus IGFR1/INSR1

inhibitors (Table S7).

Overall, these results show the value of PDTCs as predictive

drug response models prior to in vivo testing using PDTXs.

DISCUSSION

The use of PDTXs in pre-clinical cancer drug development has

become widespread (Crystal et al., 2014; Marangoni and Po-
Figure 5. Drug-Drug Combination Studies in PDTCs

(A) Synergism of paclitaxel in combination with 17-AAG. (Top panel) Bliss inde

percentile of these differences (in percentage) is plotted. For each drug combinatio

ranges in the combination. (Middle panel) Boxplots of distribution of residuals (Bli

model tested are shown. (Bottom panel) Detailed analysis for HCI008 (from top

residuals of the Bliss model for each dose combination) is shown. Red shades, s

(B) Synergism of IGF-1R/IR inhibitor (BMS-754807) with PI3K/mTOR inhibitor (N

STG201).

270 Cell 167, 260–274, September 22, 2016
upon, 2014; Messersmith et al., 2009). The data available

(DeRose et al., 2011; Eirew et al., 2015; Messersmith et al.,

2009), to which we add extensively here, show PDTXs share

most molecular and architectural features with their originating

patient tumor sample. A recently published large study of

1,000 PDTXmodels adds a further crucial piece of evidence sup-

porting their potential utility by showing the use of xenograft

models to predict human clinical trial drug responses (Gao

et al., 2015). The dataset presented here shows the unique value

of a living biobank of breast cancer explants that preserve intra-

tumor heterogeneity as a platform for drug screening, including

the demonstration of reproducible drug responses across

different xenograft passages.

A significant limitation of PDTXs as a pre-clinical platform

is the fact that in vivo studies are not well suited for

high-throughput drug screening. The PDTX/PDTC platform

presented here overcomes this limitation, and we have

demonstrated its use for both high-throughput single and

drug-drug combination studies. The platform has remarkably

good reproducibility and selectivity, similar to that observed

in analogous studies using cell lines or organoids (Garnett

et al., 2012; van de Wetering et al., 2015). The demonstration

that compounds affecting the same pathway or target and

those with similar mechanisms of action shared the same

drug responses across models testifies to its biological robust-

ness. We independently tested a set of drug responses in a

selection of models with a DNA-based method, showing

very good correlation with CTG results (which is based on

ATP levels), as others have recently reported (Haverty et al.,

2016). Further refinement of the in vitro screening will come

from introducing growth rate inhibition metrics (Hafner et al.,

2016). The in vivo validation of 33 out of 40 in-vitro-predicted

drug responses tested suggests that, in the future, PDTCs

can be used as a drug-screening platform prior to downstream

testing with the 1X1X1 PDTX clinical trial design (Gao et al.,

2015).

Crucially, we found that PDTXs and PDTCs are com-

munities of clones of varying complexity and that these

explants display intra-tumor heterogeneity similar to that

that is found in the clinical population. The preservation of

clonal communities within heterogeneous tumors in pre-clin-

ical models has recently re-emerged as key to improving ther-

apeutic strategies (Heppner, 1984; Tabassum and Polyak,

2015). This feature uniquely positions PDTXs as a human

pre-clinical model to study breast cancer biology and drug

responses.

The framework we developed of ex vivo PDTC drug screening

followed by in vivo PDTX response validation is a cost-effective

pipeline for pre-clinical drug development. The extensive
pendence model residuals for paclitaxel combinations are shown. The 95%

n, the expected response is compared to the observed response in all the dose

ss independence model) for paclitaxel and 17-AGG combination in each PDTC

to bottom: single drug curves, bivariate isotonic fit for the combination, and

ynergistic effects; blue shades, antagonistic effects.

VP-BEZ235). Panels are the same as in A (bottom panel: detailed analysis for



Figure 6. Validation of Ex Vivo PDTC Drug Responses with In Vivo PDTX Testing

Representative sensitive (gray panel) and resistant (pink panel) drug responses in several models. (Left plots) PDTC ex vivo dose response is shown. (Right plots)

PDTX in vivo tumor growth curves are shown (sample sizes are indicated in the plot; average values and error bars representing SDs are shown).

See also Figure S7.
detailed STAR Methods accompanying this report, including

both processed and raw molecular profiling and drug sensitivity

information, constitutes a publicly available dataset that we will

continue to expand with more models and further drug testing.

We will provide viable xenograft fragments to academic collabo-

rators and will also make models available to the wider commu-

nity through licensing. The extensive data generated already

represent a valuable resource, which can be easily browsed in
a purpose-built public web portal (http://caldaslab.cruk.cam.

ac.uk/bcape). We are using the PDTX/PDTC platform to study

mechanisms of drug resistance, to unravel clonal dynamics in

response to therapeutic perturbation, and to perform genome-

wide perturbations with small hairpin RNA (shRNA) and

CRISPR-CAS libraries (Marcotte et al., 2016; Shalem et al.,

2015), and these newly generated data will be continually depos-

ited into the public domain.
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Deposited Data
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Normalized data files figshare https://figshare.com/s/4a3f6bc543e5ba85834c

Experimental Models: Organisms/Strains
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Sequence-Based Reagents
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Pan-Centromeric paints
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Pan-Centromeric paints

Cambio 1697-MF-01
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annovar March 2015 Wang et al., 2010 http://annovar.openbioinformatics.org/en/latest/

ASCAT 2.2 Van Loo et al., 2010 https://www.crick.ac.uk/peter-van-loo/software/

ASCAT

Bioconductor 3.2 Huber et al. (2015) http://www.bioconductor.org

Bioconductor package beadarray 2.18.0 Dunning et al., 2007 http://www.bioconductor.org

Bioconductor package CopywriteR 2.0.6 Kuilman et al., 2015 http://www.bioconductor.org

Bioconductor package DNACopy 1.46.0 Olshen et al., 2004 http://www.bioconductor.org

Bioconductor package genefu 1.1.8.0 Haibe-Kains et al., 2012 http://www.bioconductor.org

Bioconductor package gsva 1.20.0 Hänzelmann et al., 2013 http://www.bioconductor.org

Bioconductor package QDNaseq 1.2.4 Scheinin et al., 2014 http://www.bioconductor.org

Bioconductor package VariantAnnotation

1.12.9

Obenchain et al., 2014 http://www.bioconductor.org

Bismark 0.14.0 Krueger and Andrews, 2011 http://www.bioinformatics.babraham.ac.uk/

projects/bismark/

bwa 0.7.9 Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

GATK 3.3.0 DePristo et al., 2011 https://software.broadinstitute.org/gatk/

In-house algorithms for pam50 Originally in Parker et al., 2009.

The version used here is described

in Curtis et al., 2012.

http://www.nature.com/nature/journal/v486/

n7403/full/nature10983.html

In-house algorithm for Three-Gene

classification

Originally in Haibe-Kains et al., 2012.

The version used here is based on

the genefu package implementation

and is described in Ali et al., 2014

https://static-content.springer.com/esm/art%3A10.

1186%2Fs13059-014-0431-1/MediaObjects/

13059_2014_431_MOESM17_ESM.zip

Novoalign 3.2 Novocraft http://www.novocraft.com/products/novoalign/

Picard tools 1.85 Picard https://broadinstitute.github.io/picard/

PyClone 0.12.7 Roth et al., 2014 http://compbio.bccrc.ca/software/pyclone/

R 3.2.0 R Core Team, 2016 http://www.r-project.org

R package deconstructSigs 1.6.0 Rosenthal et al., 2016 http://www.cran.r-project.org

R package flux 0.3.0. Jurasinski et al., 2014 http://www.cran.r-project.org

R package iC10 1.2.0 Ali et al., 2014 http://www.cran.r-project.org

R package isotonic.pen 1.0 Meyer et al., 2014 http://www.cran.r-project.org

R package mclust 5.2 Fraley and Raftery, 2002 http://www.cran.r-project.org

R package mgcv 1.8.12 Wood, 2004 http://www.cran.r-project.org

samtools 1.2 Li et al., 2009 http://www.htslib.org/

Other

1000 genomes database Oct 2014 Abecasis et al., 2012 http://www.1000genomes.org

C6 oncogenic signatures database Subramanian et al., 2005; Tamayo

et al., 2011.

http://software.broadinstitute.org/gsea/msigdb/

collections.jsp#C6

dbSNP database 138 Sherry et al., 2001 http://www.ncbi.nlm.nih.gov/projects/SNP/

GenomicSuperDups database libj26 Bailey et al., 2002 http://varianttools.sourceforge.net/Annotation/

GenomicSuperDups

MetaLR database libj26 Dong et al., 2015 https://sites.google.com/site/jpopgen/dbNSFP

Mutation Taster database libj26 Schwarz et al., 2010 http://www.mutationtaster.org

Polyphen 2 database libj26 Adzhubei et al., 2013 http://genetics.bwh.harvard.edu/pph2/

SIFT database libj26 Kumar et al., 2009 http://sift.jcvi.org

TCGA breast cancer mutation data Cancer Genome Atlas Network, 2012 http://www.nature.com/nature/journal/v490/n7418/

full/nature11412.html

Female Silhouette icon Human body diagrams https://commons.wikimedia.org/wiki/Human_

body_diagrams

Mouse icon Open Clipart https://openclipart.org/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for material may be directed, and will be fulfilled by the corresponding author Carlos Caldas (carlos.

caldas@cruk.cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Generation and Maintenance of a Living Biobank of Human Breast Cancer Explants
A bank of human breast cancer explants has been maintained at the CRUK Cambridge Institute (Figure 1A and Table S1) over the

past 4 years, by combining efforts from Addenbrookes Hospital and collaborating hospitals in Europe (Institute Curie, Paris and

VHIO, Barcelona), US (Huntsman Cancer Institute, Salt Lake City, Utah) and Canada (UBC, Vancouver). The PDTX biobank in

Cambridge continues to expand with routine implantation of, on average, 3 breast cancer samples per week. The time from patient

collection to mouse implantation ranges from 30-180 min.

Surgically resected primary breast cancer tissue, biopsies from brain, skin, liver, bone, axilla and lymph node metastasis, and

pleural effusions or ascites samples were obtained from consenting patients. The research was done with the appropriate approval

by the National Research Ethics Service, Cambridgeshire 2 REC (REC reference number: 08/H0308/178). Tissue samples were

embedded in matrigel and then implanted subcutaneously into 2-4 female severe immune compromised NSGmice. Pleural effusion

and ascites samples were centrifuged, washed with water twice to eliminate red blood cells, and cell pellets resuspended in 50%

matrigel:FBS solution before subcutaneous injection into mice.

PDTXs were serially implanted into multiple hosts to allow in vivo expansion of eachmodel (establishedmodel). Xenograft samples

were cryopreserved in liquid nitrogen and freezing media (FBS/10%DMSO) at each passage, from each mouse. Genotyping of all

samples was always performed to confirm matching with the originating patient derived sample (see below). All models tested to

date could be rescued by re-implantation of cryopreserved tissue. This includes successful implantation of PDTX samples obtained

from the network of collaborators, which were all obtained under the appropriate Institutional Review Boards and transferred to

Cambridge under Materials Transfer Agreements. All animal experiments were conducted in compliance with the rigorous Home

Office framework of regulations (Project License 707679).

Generation of Viable PDTX-Derived Tumor Cells
Xenograft tissue, either freshly collected or cryopreserved in FBS/10%DMSOwasminced using sterile scalpels and dissociated for a

maximum of 90 min in DMEM/F12/HEPES (GIBCO), 1mg/ml Collagenase (Roche), 100U/ml Hyaluronidase (Sigma), 25% BSA frac-

tion V (GIBCO), 5 mg/ml Insulin and 50 mg/ml Gentamycin (GIBCO). This was followed by further dissociation using trypsin (GIBCO),

Dispase (StemCell technologies) and DNase (Sigma). Red blood cell lysis was done by washing the cell pellet in a 1:4 solution of HF

media (GIBCO): AmmoniumChloride (StemCell technologies). Cells were resuspended inMEGM (Lonza) and filtered through a 40 mm

filter. For high throughput drug screens, cells were plated in MEGM in 384 well plates at a concentration of 1x106 cells/ml. Other

in vitro assays used cell concentrations outlined in the individual methods.

Sample Nomenclature
Each sample ID follows the structure XXXX-A0C0, where

XXXX: name of the model

A: Type of sample (T: tumor, N: normal, X: xenograft)

0: If the sample is a xenograft, number of passage (starting with zero)

C: C indicates PDTC

0: Number of days of culture

Any R, R1 in the name indicates a replicate.

Sample labeling
In Eirew et al. (2015), STG139 was labeled as SA577, STG143 as SA536 and STG201 as SA541.

METHOD DETAILS

Histopathological Review
Tissue microarrays were prepared using duplicate 0.6mm cores extracted from formalin-fixed paraffin-embedded blocks containing

material from patient tumors and xenografts.

These were run using Leica’s Polymer Refine Kit on their automated Bond platform. The HIER’s (sodium citrate and tris EDTA pre-

treatments) are all run at 100�C, for the time indicated in the table. The DAB Enhancer (used for all antibodies apart from ER and PR)

reference is AR9432. The de-waxing and re-hydration prior to IHC are done on the automated Leica ST5020, as is the post-IHC de-

hydration and clearing. Finally, the mounting is done on Leica’s CV5030. The slides were reviewed by a pathologist.
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PKH26 Assay
PKH26 assay (Sigma) was performed as per manufacturer’s instructions. Briefly; 1x107 cells from xenograft single cell suspensions

were incubated for 5 min in 2x10�6M PKH26. Cells were then cultured in suspension in MEGM media (Lonza). Aliquots were taken

periodically, and fixed in 2% Neutral buffered formalin prior to flow cytometric analysis.

Centrosome FISH
Pan-centromeric FISHwas performed using human andmouse specific Star*FISHª chromosome paints (Cambio). The protocol was

performed on 3-6 micron FFPE tissue sections as per manufacturer’s instructions.

Flow Cytometric Analysis of Xenograft Mouse Stromal Cell Content
Frozen xenograft samples were prepared as single cell suspensions. Non-specific antibody labeling was blocked by incubation in

10% normal rat serum for 30 min. Percentage mouse stromal content was quantified using FITC anti-mouse H-2Kb/H-2Db Antibody

[Clone: 28-8-6] (Biolegend UK Ltd).

Cell Viability Assays
Single cell suspensions generated from a 1.5 cm3 PDTX tumor were plated in triplicates at 40.000 cells/well into 384-well plates. Drug

was added to wells after 24h. To quantify drug responses in PDTCs, cell viability reading intensities were obtained 6 days post-treat-

ment and normalized against positive and negative values. To independently validate data from our drug screening approach using

CellTiter-Glo (CTG), a selection of 8 models were screened with 18 drugs and cell viability determined in parallel by CTG and two

further tests (CyQUANT and SYTOX).

1) CellTiter-Glo (CTG): The methodology was adapted from the protocol previously described for cell lines (Garnett et al., 2012).

2) CyQUANTDirect Cell Proliferation Assay (C35011). Themanufacturer’s instructions were adapted to suit PDTC culture. Briefly,

20 ml of 10X detection reagent was added to 70 ml of drug treated cells. The cells were incubated at 37�Cand Fluorescencewas

read on the Pherastar plate reader after both 1 and 8 hr of incubation.

3) SYTOX Green Nucleic Acid Stain - 5 mM Solution in DMSO (S7020). Briefly, 500mM EDTA (pH 7.0) stock diluted 1:100 in TBS,

filtered through 0.45 mm membrane was used as dilution buffer. 5mM SYTOX stock was diluted 1:1000 in dilution buffer and

10 ml was added to cells. The cells were incubated at room temperature for 6 hr. 5 ml of 1%Saponin solutionwith 0.04%Sodium

Azide was added to the cells and incubated for 20 hr at room temperature. Fluorescence was read on the Pherastar plate

reader. These comparisons were performed using 10 doses per drug.

Treatment of PDTXs In Vivo
The following reagents were used for in vivo validations upon randomization of tumor bearing NSGmice: MK-8669/Ridaforolimus as

an allosteric mTORC1 inhibitor (1mg/kg, 5IW), BKM120/Buparlisib as a pan-PI3K andBYL719 andGDC0032/Taselisib as PI3K-alpha

inhibitors (27.5, 35mg/kg 6IW and 5 mg/kg, respectively), LEE011/Ribociclib as a CDK4/6 inhibitor (75mg/kg), AZD2281 (Olaparib/

Lynparza) as a PARP inhibitor (50mg/kg, 5IW), AZD1775 as Wee1 inhibitor (120mg/kg, 5dON 9dOFF) and Tamoxifen (10mg/ml,

100ml daily) as an ER pathway inhibitor. Tumor volumes were normalized to the starting tumor volume and mean volumes were

plotted and compared to vehicle-treated controls. Details such as number of mice used and mean volumes per treatment arm are

shown in Table S7.

All experimental procedures were approved by the University of Cambridge Animal Welfare and Ethical Review Committee and by

the Vall d’Hebron Hospital Clinical Investigation Ethical Committee and Animal Use Committee.

Experimental Design
One of themain goals of this project was to study variability in themolecular features of the tumors engrafted and the drug responses

in PDTCs. For that, different levels of replication were used: tumor biological replicates (where different pieces of originating cancer

sample were engrafted), PDTX biological replicates (where different mice were engrafted with different samples from the same PDTX

sample), PDTC biological replicates (where the same PDTX was cultured at least twice as PDTCs) and technical replicates for both

PDTXs and PDTCs.

No specific strategy for randomization was employed, and no blinding was used, except for in vivo validations of drug response as

described in the previous section. As this is a pilot study and we had no prior estimates of variability between engraftments, no sam-

ple size calculations were done. There were no criteria of exclusion for tumor engraftment.

QUANTIFICATION AND STATISTICAL ANALYSIS

Throughout all the analysis description, we refer to ‘‘model’’ as a collection of a primary tumor, matched normal samples, matched

PDTX passages or PDTCs, and ‘‘sample’’ as any of the instances of a given model.
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Statistical parameters including the exact value of n in terms of number of samples and models and the definition of location and

dispersion measures for each figure are reported in the Figures and the Figure Legends.

Details and Number of Samples Analyzed
Whole-Genome Sequencing

Number of samples sequenced: 1

Number of different models: 1

STG139M

Whole-Exome Sequencing

Number of samples sequenced: 193

Number of different models: 33

AB521M, AB551, AB555, AB559, AB580, AB630, CAMBMT1, HCI001, HCI002, HCI004, HCI005, HCI008, HCI009, HCI010,

HCI011, IC007, STG139, STG139M, STG143, STG195, STG201, STG282, STG316, STG335, VHIO039, VHIO089, VHIO093,

VHIO098, VHIO102, VHIO124, VHIO131IGFRES, VHIO179, VHIO244

Shallow Whole-Genome Sequencing

Number of different samples: 132

Number of different models: 32

AB521M, AB551, AB555, AB559, AB580, AB630, CAMBMT1, HCI001, HCI002, HCI004, HCI005, HCI008, HCI009, HCI010,

HCI011, STG139, STG139M, STG143, STG195, STG201, STG282, STG316, STG335, VHIO039, VHIO089, VHIO093, VHIO098,

VHIO102, VHIO124, VHIO131IGFRES, VHIO179, VHIO244

Reduced Representation Bisulfite Sequencing

Number of samples sequenced: 68

Number of different models: 33

Average number of CpGs with at least 5 reads: 2,355,537

AB521M, AB555, AB559, AB564, AB572, AB580, HCI001, HCI002, HCI004, HCI005, HCI006, HCI008, HCI009, HCI010, HCI011,

HCI012, HCI014, IC006, STG139, STG139M, STG195, STG201, STG282, STG316, STG335, VHIO039, VHIO089, VHIO093,

VHIO098, VHIO102, VHIO124, VHIO169, VHIO179

Expression Arrays

Number of samples: 153

Number of different models: 39

AB521M, AB551, AB555, AB559, AB580, AB630, HCI001, HCI002, HCI004, HCI005, HCI006, HCI008, HCI009, HCI010, HCI011,

HCI014, IC006, IC007, STG139, STG139M, STG143, STG195, STG201, STG282, STG316, STG335, VHIO006, VHIO039, VHIO089,

VHIO093, VHIO094, VHIO098, VHIO102, VHIO124, VHIO131, VHIO161, VHIO169, VHIO179, VHIO244

Drug Screening

Single-Drug Tests:

Number of total single-drug tests (with technical replicates): 6634

Number of single-drug tests: 2550

Number of different models: 20

Number of different models/passages: 37

Number of different drugs: 104

Combinations:

Number of total combination tests (with technical replicates): 288

Number of combination tests: 144

Number of different models: 8

Number of different models/passages: 10

Number of different combinations: 18

HCI002, HCI009, HCI010, HCI001, HCI005, HCI008, HCI011, IC007, STG139, STG139M, STG143, STG201, STG195, STG282,

STG316, STG335, VHIO098, VHIO179, VHIO169, VHIO244

COMPUTATIONAL PIPELINE FOR DISCRIMINATING MOUSE AND HUMAN SEQUENCES

The analysis of sequencing data from PDTXs is hampered by the presence of mouse stroma contamination. Due to the high homol-

ogy between the two genomes, a proportion of mouse reads can still map to homologous regions of the human genome, likely with

some mismatch, heavily affecting downstream analysis.

To develop a computational approach able to tackle this issue, we carried out a Whole Exome Sequencing (WES) experiment in a

controlled setting where fixed amounts of human and mouse DNA were mixed, ranging from a pure human sample to a pure mouse

sample.
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The adopted strategy was to align the reads against a combined human-mouse genomewith Novoalign. This way, althoughmouse

reads could be mapped against the human genome, they will likely map with higher score in the corresponding mouse locus. Reads

mapping with identical scores in two (or more) locations were discarded.

The table below shows the performance of our approach. When a pure human DNA sample or a pure mouse DNA sample is map-

ped against the combined genome, 99.9% of the reads or more are mapped correctly.
Sample ID % human DNA Replicate

% reads mapped on

human genome

% reads mapped on

mouse genome

Estimated human

DNA content

0_100_R1 0 1 0.10 99.90 0.00

0_100_R2 0 2 0.10 99.90 0.01

0_100_R3 0 3 0.08 99.92 0.01

25_75_R1 25 1 62.44 37.56 22.55

25_75_R2 25 2 64.58 35.42 24.36

50_50_R1 50 1 83.14 16.86 52.59

50_50_R2 50 2 82.18 17.82 50.56

50_50_R3 50 3 82.78 17.22 51.82

90_10_R2 90 1 97.59 2.41 90.97

90_10_R3 90 2 97.58 2.42 90.93

100_0_R1 100 1 99.98 0.02 98.70

100_0_R2 100 2 99.98 0.02 98.69

100_0_R3 100 3 99.98 0.02 98.70
We found a non-linear relationship between the percentage of human DNA content and the percentage of reads mapped on the

human genome. The bias is likely caused by the capturing step, since probes specifically designed against human exons were used.

Therefore, we derived a calibration curve using a loess regression (Figure S2B), making it possible to estimate the human DNA con-

tent in independent samples.

WES ANALYSIS

WES libraries were prepared using Nextera Rapid Capture Exome (Illumina Inc., USA) following manufacturer’s instructions (Enrich-

ment Guide version #15037436 Rev. J, Illumina Inc., USA). Briefly, PDTX DNA was quantified using Quant-iT broad range dsDNA

Assay (Thermo Fisher, USA) and 50ng used as input into the Nextera exome library preparation. Pre-capture libraries were normal-

ized to 20nM and pooled for shallow whole genome sequencing (sWGS). Pre-capture libraries were quantified using qPCR and their

average length was assed using DNA1000 chip on Bioanalyzer 2100 (Agilent Technologies Inc., USA). 500ng of each library was

pooled for three-plex exome capture, and after 11 cycles of PCR amplification were again normalized to 15nM and pooled for

high-coverage paired-end exome sequencing.

The sequencing was performed using 125bp paired-end reads. Short reads were aligned using novoalign (Novocraft) with our

custom pipeline to remove mouse contamination. Bam files were merged, sorted and indexed using samtools. Duplicates were

marked using Picard tools and insertions and deletions (indels) were realigned using GATK.

For quality control purposes and to check for sample labeling mistakes, all samples were genotyped using GATK HaplotypeCaller

and a few errors were identified and corrected. HaplotypeCaller was also employed for variant calling, and after that several filters

were applied using the Bioconductor package VariantAnnotation: for single nucleotide variants (SNVs), a minimum genotyping qual-

ity of 20, at least 5 reads at the variant position, a strand bias Phred-scale p value smaller than 40 and no presence of homopolymers

in the surrounding region. For indels, we increased the width of the region to detect nearby homopolymers. Genotypes and variant

allele frequencies (VAFs) were computed from these calls.

All variants were annotated using annovar version March 2015 for gene/exon annotation, 1000 genomes version Oct 2014, dbSNP

version138, repetitive regions genomicSuperDups database, SIFT, Polyphen 2, MutationTaster and MetaLR, all versions ljb26.

Variants in intergenic, intronic or ncRNA intronic positions were discarded.

In order to quantify variability in matched tumor/PDTX, different passages of PDTXs or matched PDTX/PDTC, all variants detected

in at least one sample of each model were obtained. For those samples where those variants had not been detected GATK

HaplotypeCaller was run again on those positions to see if this was a consequence of no reads in that region for that sample or a

real absence of the variant.

Normal contamination estimates were obtained for each tumor sample combining copy number calls from shallow sequencing

(see next section) and SNV calls. First, we selected heterozygous SNPs in the matched normal sample (if available, otherwise all het-

erozygous variants in the tumor were considered), and then looked at only those in regions of copy number loss in the tumor, as
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defined by a segmented mean copy number log ratio smaller than�0.1. In these regions, as a loss of heterozygosity has occurred, it

is expected that all variants will have a VAF of 0 or 1 (if no normal contamination is present). For the AB SNPs that are left to B ge-

notype, the expected value of contamination would be 2 * VAF – 1, assuming that all tumor cells acquired the deletion. As this is a

downward estimate, we chose as the tumor content estimate themaximumof the density function of the VAF of those variants. These

estimates were used to correct tumor VAFs or copy numbers where needed in the rest of the analyses.

All variants that were present in the 1000 Genomes database or in any of our normal samples were labeled as germline. Regions

marked as repetitive were also filtered, and insertions that represented a segmental duplication were removed if they were not pre-

sent in at least three-fourths of all the samples for a givenmodel or in 3 of them. Somatic variants that were not filtered were compiled

for each model. Some manual curation was needed for genes like PI3KCA, where variants from a region of segmental duplication

were included after manual inspection.

Frequencies of mutations were compared to TCGA.

Pearson correlations between VAFs in tumor and PDTX, different passages of the samemodel, PDTX and PDTCs of the same pas-

sage, mice replicates, technical replicates of the same sample and different tumors were computed.

To quantify tumor heterogeneity two methods were used: MATH (Mroz and Rocco, 2013) and PyClone (Roth et al., 2014). MATH

essentially quantifies the ratio of the width of the center of the VAF values, while PyClone is a Bayesian clustering method that infers

the clonal population structures for each sample from each model. Briefly, PyClone takes as input the allele frequencies of somatic

mutations in each sample and clusters mutations that shift together across the samples, predicting the cellular frequency for each

cluster in each sample accounting for copy number changes and normal cell contamination. Because PyClone requires absolute

allelic copy number information to be inputted for each mutation, ASCAT v2.2 was ran for that task. ASCAT was run using the log

ratios from the shallow sequencing when available and the VAFs from the exome sequencing. For those samples with no shallow

sequencing, CopywriteR was run on the whole exome sample. When possible, tumor/normal paired analysis was run on ASCAT.

Filtering and quality control was carried out prior to running ASCAT; samples were removed if the mean coverage across all the mu-

tationswas less than 20.Mutations that were not sequenced to a depth of at least 10 reads in either the cancer or normal sample were

also excluded.

We then applied Pyclone to a total of 22 PDTX models, ranging between 2 and 15 samples for each model. Only mutations with a

median coverage of at least 50 across all model samples were used. Additionally, for each model, mutations with a coverage smaller

than 15 in any of the samples were removed from the analysis. Germline mutations (SNPs, duplications, and repeats present in the

normal sample) were not utilized (but note that germline filtering was less stringent for PyClone analysis; in particular, variants that

were present in the 1000Genomes database were not removed, as we observed some VAF changes between samples that would be

useful to distinguish variability from real changes). Mutations with low variant allele frequency (< 0.1) across all samples were also

excluded. In cases where greater than 300 high quality mutations remained after filtering, the 300 mutations with the highest median

coverage were used as input for PyClone. Normal cell contamination estimations for each tumor sample were also used (the PDTX

and PDTC samples have a theoretical contamination of 0). PyClone was run for 40,000 iterations with a burn in period of 20,000

iterations using a beta binomial parameter of 500. To measure the clones whose prevalence changed significantly between time

points, we compute the 90% credible intervals and those clusters that had a sample not overlapping with the rest were called sig-

nificant. These mutations were considered cancer driver genes if they were part of the 40 MutDriver genes (Pereira et al., 2016). For

clarification, and as recommended in the original PyClone paper, we only plotted those clusters with more than one mutation.

Mutational profiles (Alexandrov et al., 2013) were computed for each of the samples using the package deconstructSigs (Rosenthal

et al., 2016). Signatures were not computed due to the small number of variants in many samples.

sWGS

The sWGS workflow uses low-coverage sequencing of the pre-capture exome-sequencing libraries to generate high-quality CNA

calls. This is efficient in PDTX DNA usage, low-cost (around £30 per sample), and generates better quality copy-number data

than what is achievable from WES. As described above in exome sequencing analysis, libraries were prepared using Nextera Rapid

Capture Exome (Illumina Inc., USA). Pre-capture libraries were normalized to 10uM and pooled for shallow whole genome

sequencing (sWGS).

50 bp single-read whole-genome shallow sequencing was performed in parallel with the exome sequencing to provide a clean and

accurate estimate of copy number. Alignment was performed using bwa with our custom pipeline to remove mouse contamination.

Bam files were merged, sorted and indexed using samtools. Duplicates were marked using Picard tools. The data were analyzed

using the Bioconductor package QDNaseq. This method divides the genome in regions of 100Kb and counts all the reads within

those bins. Those reads are then corrected for mappability andGC content and segmented using DNAcopy. Some additional filtering

was applied to account for regions not properly mapped.

We also observed that in a few occasions, the method shifted the log2 ratios because of the median normalization. Those cases

were inspected perusing the VAF plots obtained with ASCAT and fixed.

The segmented means of the tumors were corrected for normal contamination (as described in the exome pipeline) and copy

numbers (HOMD, Homozygous deletions, HETD, Heterozygous deletions, NEUT, neutral copy number, GAIN, single copy gains

and AMP, high-level amplifications), were called based on thresholds on the segmented mean log2-ratio (�1, �0.4, 0.25, 0.75).
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Pearson correlations between segmented means in tumor and PDTX, different passages of the same model, PDTX and PDTCs of

the same passage, mouse replicates, technical replicates of the same sample and different tumors were computed.

MICROARRAY EXPRESSION ANALYSIS

RNA expression was analyzed using the Illumina HT-12 v3 platform. Raw data were processed with the beadarray package. The

BASH algorithm was employed to correct for spatial artifacts. Summarization and probe selection based on quality was performed

on the bead-level data using the detection thresholds recommended in the package and the re-annotation of the Illumina HT-12v3

platform as described previously (Curtis et al., 2012). The samples were classified into the intrinsic subtypes using PAM50, and the

Three Gene classifier. ER, Her2 and PR status was inferred fitting a mixture model with the package mclust.

Classification into Integrative Clusters (IntClusts). The PDTX samples were classified into one of the 10 Integrative Clusters (Curtis

et al., 2012) using the scripts provided in (Ali et al., 2014) and the R package iC10 (Ali et al., 2014). Each sample was classified into the

10 Integrative Clusters and the assignment to eachmodel was done by consensus (that is, the majority group for all the samples from

that model). Copy number and expression data were used when available (n = 21). If not, only expression data (n = 17) or only copy

number data (n = 0, no model had all samples with only copy number data). Comparing the assignments done with copy number and

expression to the ones using only one type of data, there were nomodels that changedwhen using only expression data versus using

combined CNA-expression data and 12 that changed when using only copy number data versus using combined CNA-expression

data (2 from IntClust 1 to IntClus 9, 1 from InClust 5 to IntClust 10, 1 from IntClust 7 to IntClust 8, 2 from IntClust 10 to IntClust 3, 1 from

IntClust 10 to IntClust 4, 5 from IntClust 10 to IntClust 9).

As the PDTX cohort might not represent all types of breast cancers, we included the 1980Metabric samples (Curtis et al., 2012) and

quantile-normalized them together with the PDTX samples to obtain more accurate classifications on all methods.

Pathway activation scores. We downloaded the c6 oncogenic signatures from the Molecular Signatures Database (and incorpo-

rated an in-house PI3K/AKT/mTOR and an in-house DNA Damage Response DDR signature) and applied the GSVA package to infer

sample specific pathway activation. Similarly, as the PDTX cohort might not represent all types of breast cancers, we also included

the 1980 Metabric samples and quantile-normalized them together before converting the expression values into z-scores. For path-

ways that had a subset of genes that should be upregulated (UP) and another subset that should be downregulated (DOWN), the final

score was obtained as UP-DOWN.

Heat maps and cluster analysis were performed using Euclidian distance and the Ward method.

Pearson correlations between log-intensity expression values or pathway activation scores in tumor and PDTX, different passages

of the same model, PDTX and PDTCs of the same passage, mice replicates, technical replicates of the same sample and different

tumors were computed.

A detailed comparison of pathway activity scores in tumor and PDTX and PDTX passages was performed fitting, to each pathway,

a generalized additive model using the R packagemgcv with the score of the tumor as the dependent variable and a smooth function

of the score of all the PDTX passages as the independent variable. The deviance and the Spearman Correlation were computed as

measures of predictive ability and reproducibility. Similar models were fit using the first PDTX passage as dependent variable and the

rest of the passages as independent.

METHYLATION REDUCED REPRESENTATION BISULFITE SEQUENCING ANALYSIS

RRBS sequencing was performed using 125bp paired-end reads. Alignment was carried out using Bismark with our custom pipeline

to remove mouse contamination. Only CpGs with at least 5 reads were selected for subsequent analysis. Methylation levels were

obtained as the proportion of Cs in the CpG sites.

Pearson correlations between proportion of methylation in CpG sites in tumor and PDTX, different passages of the same model,

PDTX and PDTCs of the same passage, mice replicates, technical replicates of the same sample and different tumors were

computed. A filter of 1,000,000 reads was applied for this analysis.

For downstream analysis, a filter of 1.5 million reads was applied to select samples and for each gene promoter methylation score

was computed as the mean value in the CpG sites in the region ± 2,000 around the TSS.

ANALYSIS OF HIGH-THROUGHPUT DRUG SCREENING USING PDTCS

The observed response was computed as: 100 – (100 * (intensity-negative control)/(positive control – negative control). Quality Con-

trol was performed comparing response values in plates and screenings done in similar dates. Non-parametric isotonic regression

using the R function isoreg was fit to the set of technical replicates of a given drug response for a given sample. The area under the

curve (AUC) was computed on the model fits using the package flux which uses the trapezoid rule. The half maximal inhibitory con-

centration (IC50) was predicted fitting a smoothing spline to the isotonic regression line. As a measure of variability around the AUC

and IC50 estimates, isotonic regression curves were fit to each of the technical replicates individually and their AUC and IC50 also
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computed, producing error bars for the overall estimates based on the standard deviation. In order to compare IC50 estimates from

drugswith different range of doses, we computed the IC50 as a percentage dose using the formula 100 * (IC50 –minimumdose tested)

/ (range of doses tested).

Unsupervised clustering using Euclidean distance and theWardmethod on the fitted dose-response curves showed eight different

patterns that corresponded to different expected responses. We then established eight theoretical curves based on the percentage

of cells dead at the five dosage points:

d (0, 0, 0, 0, 0)

d (0, 0, 0, 0, 50)

d (0, 0, 0, 50, 90)

d (0, 0, 30, 50, 90)

d (0, 25, 50, 75, 100)

d (0, 50, 60, 80, 100)

d (60, 60, 60, 60, 60)

d (100, 100, 100, 100, 100)

These curves cover increasingly sensitive response patterns, from no response to full toxicity. Each response was classified into

these theoretical curves by a minimum squares approach.

Pearson correlation between technical replicates was computed on the drug responses (AUC) of the same sample and the same

drug. Pearson correlation between biological replicates was computed on the drug responses (AUC) of the same model and the

same drug.

Data from drug combinations was subject to the same normalization as in the single drug pipeline. As each combination screening

contained also two single drug responses (for each drug in the combination), the Pearson correlationwas computed comparing these

and the single drug screen (previously obtained) for the samemodel/drug. Isotonic regression curves and AUCwere fitted to the sin-

gle response curves of the drugs in the combination. Synergistic effects were measured using the Bliss model (Bliss, 1939; Greco

et al., 1995), which compares the observed response under a given combination of two drugs and the expected response under

a model of independence. That is, if the proportion of cells dead with a dose i of a drug X is rx(i) and the proportion of cells dead

with a dose j of a drug Y is rY(j), the expected proportion of cells dead under a combination of i and j is rx(i) + rY(j) - rx(i) rY(j). These

values were computed by fitting an isotonic regression on each single drug response and compared with a bivariate isotonic fit on the

drug combination obtained with the R package isotonic.pen. The residuals of the Bliss model were defined as the difference between

the observed and the expected response. These values were takenmerely as descriptive markers and no inferences were performed

on them.

DATA AND SOFTWARE AVAILABILITY

Software
Custom scripts to run the analyses are available at figshare: https://figshare.com/s/4a3f6bc543e5ba85834c

Data Resources
Raw sequencing and microarray files are available at EGA: EGAS00001001913.

Normalized/Summarized data files are available at figshare: https://figshare.com/s/4a3f6bc543e5ba85834c. This repository also

contains files with a comprehensive collection of plots including Pearson and Spearman correlation of SNVs, copy number, gene

expression, pathway activation and methylation, pairwise scatterplots showing variant allele frequencies in each model, mutational

profiles in each sample, copy number plots for each of the samples, pairwise scatterplots showing pathway scores in each model,

pairwise smoothed scatterplots showing CpG methylation scores in each model, AUC and iC50 scores for all drugs in each model

tested, dose-response curves for each drug and model tested, pairwise scatterplots showing AUC scores for drugs targeting the

same pathway, boxplots showing Spearman correlation between cancer pathway activity score and AUCs for compounds targeting

the same pathway and results of the Bliss model for each drug combination applied to each model.

The dataset is also available in an interactive web portal that allows exploration, plotting and data downloading: http://caldaslab.

cruk.cam.ac.uk/bcape
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Supplemental Figures
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Figure S1. Related to Figure 1 and STAR Methods

(A) Copy number profiles based on the cis-features that define the 10 Integrative Clusters (Curtis et al., 2012) in the METABRIC discovery dataset (n = 997 breast

tumors) and the PDTX biobank (n = 121 samples from 36 models).

(B) Left panel: Goodness of fit scores for copy number-based classification into IntClust subtypes (Metabric cohort n = 905 tumors, PDTX cohort n = 87 samples

from 36 models). Right panel: Kaplan-Meier (disease-specific survival) of IntClust subtypes for the METABRIC cohort. IntClust4 was further stratified into ER-+

and ER-.

(C) Hierarchical clustering (Ward’s method) of cancer pathway activation scores across samples. Included are 15 randomly picked samples belonging to each of

the 10 IntClusts from the METABRIC cohort and 19 PDTX models (plus 5 technical replicates).

(D) Scatter plot of reproducibility and prediction accuracy of cancer pathway activation scores in PDTXs (n = 78 tumor/PDTX pairs from 16 models). Repro-

ducibility was assessed using Spearman correlation of cancer pathway scores in matched tumors and PDTXs. Prediction accuracy was determined by fitting a

generalized additive model and computing the deviance explained.



A
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Figure S2. Related to STAR Methods and Figures 2A and 2B

(A) Representative images from the histopathological analysis of PDTXs. Images from both an ER+ (STG335) and a triple negative (STG139) model at different

passages are shown.

(B) Calibration curve for estimation of mouse content based on the proportion of mapped reads from WES to the human genome.

(C) Estimated percentage of mouse contamination fromWES data. Top panel: data for eachmodel at different passages is represented. Bottom panel: Box plots

showing the distribution of percentage of human cells per model in all samples tested, including different mice from the same passage and the same model, and

different passages of the same model (n = 94 samples from 29 models; estimates from the same model and passage have been averaged).

(D) Representative FACS plot of single cells (left) and a FISH image (right) on an FFPE tissue section from an example PDTX sample. Table shows average

percentage of mouse cells in different PDTX models tested by FACS.
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Figure S3. Related to Figure 3 and STAR Methods

(A) Box plots of MATH scores for each model analyzed (n = 238 samples from 39 models). Each box plot represents the distribution of scores for matched tumor

(red T), PDTXs and PDTCs.

(B) Plots of average change in clonal cluster prevalence. PyClone was used to infer clonal architecture for the set of samples from each PDTXmodel. For all PDTX

models with more than two samples, the absolute change in clonal cluster prevalence was averaged over all clusters. Left plot: average change in clonal cluster

prevalence with short-term culture of PDTX cells (n = 5 comparisons from 3 models). Middle plot: average change in clonal cluster prevalence with serial

passaging (n = 38 passages from 12 models). Right plot: average change in clonal cluster prevalence with implantation (originating sample versus earliest PDTX

passage; n = 24 pairs from 16 models). Dot size is proportional to number of samples analyzed.

(C) PyClone individual cluster plots showing clonal mean cellular prevalences for 22 models. Width lines are proportional to the number of variants in each clonal

cluster. The legend indicates the name of the cluster and the number of variants in it. Asterisks remark clusters whose cellular frequencies are significantly

different between samples. Only clusters with at least one variant are shown in the plot.
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Figure S4. Related to Figure 4 and STAR Methods

(A) Representative microscopy images from 8 PDTX models of short-term cultures (PDTCs) at day 7 after plating.

(B) Box plots showing the percentage of human DNA on PDTX (n = 94 samples) and PDTC (n = 15 samples) models (n = 29). Data estimated from our sequencing-

based approach.

(C) Changes in cell number and viability of PDTCs at each time-point.

(D) Representative FACS image from PKH26 assay. Table showing quantification of PKH26 low cells in 2 PDTCs (STG195 and STG201) and a highly proliferative

breast cancer cell line (MDAMB231), shown for comparison purposes, at different time-points.

(E) Scatterplots comparing AUC values measuring drug response for 19 drugs in 8 models (AB521, AB555, AB582, STG195, STG316, STG321, STG335 and

VHIO093) using 3 different viability assays. 10 different doseswere tested. Curve fitting and computation of the AUCwas done as described in the STARMethods.

Dots highlighted in color correspond to PI3K pathway inhibitors: GDC032 (PI3Ka) in red, GDC0941 (pan PI3K) in blue, AZD6482 (PI3Kb) in purple, and AZD8055

(mTOR) in green.



(legend on next page)



Figure S5. Related to Figure 4 and STAR Methods

(A) Drug responses classified into 8 different groups according to response curves. Left panel- the drug responses clustered into 8 groups. Right panel- plots with

percentage of samples (n = 37 samples from 20 models) displaying each drug response pattern for each compound. Drug name (bold) and putative target

indicated.

(B) Unsupervised clustering of drug responses in tested models (n = 37 samples from 20 models) according to subtype of drug response pattern (color coded as

in A). Vertical axis- drugs; horizontal axis- models.



(legend on next page)



Figure S6. Related to Figure 4 and STAR Methods

(A) AUC and iC50 values (as percentage, see STAR Methods) for the EGFR/ERBB2 inhibitor BIBW2992 (Afatinib). Dots represent estimates using all technical

replicates and error bars are standard errors of the estimates obtained using each technical replicate individually.

(B) BRCA1 promoter methylation percentage measured by RRBS (n = 33 models).

(C) BRCA1 expression measured by expression microarrays (n = 35 samples from 19 models).



Figure S7. Related to Figure 6 and STAR Methods

(A) Table showing drug combinations tested.

(B) Scatterplot showing AUC values for all drugs tested in both individual compound screen and as single agent in the drug-drug combination screen. Pearson

correlation score is indicated (n = 125 comparisons on 8 models).
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