11 research outputs found

    An efficient adaptive modulation technique over realistic wireless communication channels based on distance and SINR

    No full text
    A growing trend has been observed in recent research in wireless communication systems. However, several limitations still exist, such as packet loss, limited bandwidth and inefficient use of available bandwidth that needs further investigation and research. In light of the above limitations, this paper uses adaptive modulation under various parameters, such as signal to interference plus noise ratio (SINR), and communication channel 19s distances. The primary goal is to minimize bit error rate (BER), improve throughput and utilize the available bandwidth efficiently. Additionally, the impact of Additive White Gaussian Noise (AWGN), Rayleigh and Rician fading channels on the performance of various modulation schemes are also studied. The simulation results demonstrate that our proposed technique optimally improves the BER and spectral efficiency in the long-range communication as compared to the fixed modulation schemes under the co-channel interference of surrounding base stations. The results indicate that the performance of fixed modulation schemes is suitable only either at high SINR and low distance or at low SINR and high distance values. Moreover, on the other hand, its performance was suboptimal in the entire wireless communication channel due to high distortion and attenuation. Lastly, we also noted that BER performance in the AWGN channel is better than Rayleigh and Rician channels with Rayleigh channel exhibiting poor performance than the Rician channel.This work has been supported by National Natural Science Foundation of China and Key Research and Development Program of Hainan Province (China). This research was funded by the National Natural Science Foundation of China under grant 62031014 and Key Research and Development Program of Hainan Province (China) under grant ZDYF2019195.info:eu-repo/semantics/publishedVersio

    Classification of Initial Stages of Alzheimer’s Disease through Pet Neuroimaging Modality and Deep Learning: Quantifying the Impact of Image Filtering Approaches

    No full text
    Alzheimer’s disease (AD) is a leading health concern affecting the elderly population worldwide. It is defined by amyloid plaques, neurofibrillary tangles, and neuronal loss. Neuroimaging modalities such as positron emission tomography (PET) and magnetic resonance imaging are routinely used in clinical settings to monitor the alterations in the brain during the course of progression of AD. Deep learning techniques such as convolutional neural networks (CNNs) have found numerous applications in healthcare and other technologies. Together with neuroimaging modalities, they can be deployed in clinical settings to learn effective representations of data for different tasks such as classification, segmentation, detection, etc. Image filtering methods are instrumental in making images viable for image processing operations and have found numerous applications in image-processing-related tasks. In this work, we deployed 3D-CNNs to learn effective representations of PET modality data to quantify the impact of different image filtering approaches. We used box filtering, median filtering, Gaussian filtering, and modified Gaussian filtering approaches to preprocess the images and use them for classification using 3D-CNN architecture. Our findings suggest that these approaches are nearly equivalent and have no distinct advantage over one another. For the multiclass classification task between normal control (NC), mild cognitive impairment (MCI), and AD classes, the 3D-CNN architecture trained using Gaussian-filtered data performed the best. For binary classification between NC and MCI classes, the 3D-CNN architecture trained using median-filtered data performed the best, while, for binary classification between AD and MCI classes, the 3D-CNN architecture trained using modified Gaussian-filtered data performed the best. Finally, for binary classification between AD and NC classes, the 3D-CNN architecture trained using box-filtered data performed the best

    Classification of Initial Stages of Alzheimer’s Disease through Pet Neuroimaging Modality and Deep Learning: Quantifying the Impact of Image Filtering Approaches

    No full text
    Alzheimer’s disease (AD) is a leading health concern affecting the elderly population worldwide. It is defined by amyloid plaques, neurofibrillary tangles, and neuronal loss. Neuroimaging modalities such as positron emission tomography (PET) and magnetic resonance imaging are routinely used in clinical settings to monitor the alterations in the brain during the course of progression of AD. Deep learning techniques such as convolutional neural networks (CNNs) have found numerous applications in healthcare and other technologies. Together with neuroimaging modalities, they can be deployed in clinical settings to learn effective representations of data for different tasks such as classification, segmentation, detection, etc. Image filtering methods are instrumental in making images viable for image processing operations and have found numerous applications in image-processing-related tasks. In this work, we deployed 3D-CNNs to learn effective representations of PET modality data to quantify the impact of different image filtering approaches. We used box filtering, median filtering, Gaussian filtering, and modified Gaussian filtering approaches to preprocess the images and use them for classification using 3D-CNN architecture. Our findings suggest that these approaches are nearly equivalent and have no distinct advantage over one another. For the multiclass classification task between normal control (NC), mild cognitive impairment (MCI), and AD classes, the 3D-CNN architecture trained using Gaussian-filtered data performed the best. For binary classification between NC and MCI classes, the 3D-CNN architecture trained using median-filtered data performed the best, while, for binary classification between AD and MCI classes, the 3D-CNN architecture trained using modified Gaussian-filtered data performed the best. Finally, for binary classification between AD and NC classes, the 3D-CNN architecture trained using box-filtered data performed the best

    3D convolutional neural networks based automatic modulation classification in the presence of channel noise

    Get PDF
    Automatic modulation classification is a task that is essentially required in many intelligent communication systems such as fibre-optic, next-generation 5G or 6G systems, cognitive radio as well as multimedia internet-ofthings networks etc. Deep learning (DL) is a representation learning method that takes raw data and finds representations for different tasks such as classification and detection. DL techniques like Convolutional Neural Networks (CNNs) have a strong potential to process and analyse large chunks of data. In this work, we considered the problem of multiclass (eight classes) classification of modulated signals, which are, Binary Phase Shift Keying, Quadrature Phase Shift Keying, 16 and 64 Quadrature Amplitude Modulation corrupted by Additive White Gaussian Noise, Rician and Rayleigh fading channels using 3D-CNN architectures in both frequency and spatial domains while deploying three approaches for data augmentation, which are, random zoomed in/out, random shift and random weak Gaussian blurring augmentation techniques with a cross-validation (CV) based hyperparameter selection statistical approach. Simulation results testify the performance of 10-fold CV without augmentation in the spatial domain to be the best while the worst performing method happens to be 10-fold CV without augmentation in the frequency domain and we found learning in the spatial domain to be better than learning in the frequency domain.National Natural Science Foundation of China, Grant/Award Number: 62031014; Key Research and Development Program of Hainan Province (China), Grant/Award Number: ZDYF2019195info:eu-repo/semantics/publishedVersio

    Diagnosis of Diabetic Retinopathy through Retinal Fundus Images and 3D Convolutional Neural Networks with Limited Number of Samples

    No full text
    Diabetic retinopathy (DR) is a worldwide problem associated with the human retina. It leads to minor and major blindness and is more prevalent among adults. Automated screening saves time of medical care specialists. In this work, we have used different deep learning (DL) based 3D convolutional neural network (3D-CNN) architectures for binary and multiclass (5 classes) classification of DR. We have considered mild, moderate, no, proliferate, and severe DR categories. We have deployed two artificial data augmentation/enhancement methods: random weak Gaussian blurring and random shift along with their combination to accomplish these tasks in the spatial domain. In the binary classification case, we have found the performance of 3D-CNN architecture trained by deploying combined augmentation methods to be the best, while in the multiclass case, the performance of model trained without augmentation is the best. It is observed that the DL algorithms working with large volumes of data may achieve better performances as compared to the methods working with small volumes of data

    Automated Classification of Brain Tumors from Magnetic Resonance Imaging Using Deep Learning

    No full text
    Brain tumor classification is crucial for medical evaluation in computer-assisted diagnostics (CAD). However, manual diagnosis of brain tumors from magnetic resonance imaging (MRI) can be time-consuming and complex, leading to inaccurate detection and classification. This is mainly because brain tumor identification is a complex procedure that relies on different modules. The advancements in Deep Learning (DL) have assisted in the automated process of medical images and diagnostics for various medical conditions, which benefits the health sector. Convolutional Neural Network (CNN) is one of the most prominent DL methods for visual learning and image classification tasks. This study presents a novel CNN algorithm to classify the brain tumor types of glioma, meningioma, and pituitary. The algorithm was tested on benchmarked data and compared with the existing pre-trained VGG16, VGG19, ResNet50, MobileNetV2, and InceptionV3 algorithms reported in the literature. The experimental results have indicated a high classification accuracy of 98.04%, precision, recall, and f1-score success rate of 98%, respectively. The classification results proved that the most common kinds of brain tumors could be categorized with a high level of accuracy. The presented algorithm has good generalization capability and execution speed that can be helpful in the field of medicine to assist doctors in making prompt and accurate decisions associated with brain tumor diagnosis

    Early-Stage Alzheimer’s Disease Categorization Using PET Neuroimaging Modality and Convolutional Neural Networks in the 2D and 3D Domains

    No full text
    Alzheimer’s Disease (AD) is a health apprehension of significant proportions that is negatively impacting the ageing population globally. It is characterized by neuronal loss and the formation of structures such as neurofibrillary tangles and amyloid plaques in the early as well as later stages of the disease. Neuroimaging modalities are routinely used in clinical practice to capture brain alterations associated with AD. On the other hand, deep learning methods are routinely used to recognize patterns in underlying data distributions effectively. This work uses Convolutional Neural Network (CNN) architectures in both 2D and 3D domains to classify the initial stages of AD into AD, Mild Cognitive Impairment (MCI) and Normal Control (NC) classes using the positron emission tomography neuroimaging modality deploying data augmentation in a random zoomed in/out scheme. We used novel concepts such as the blurring before subsampling principle and distant domain transfer learning to build 2D CNN architectures. We performed three binaries, that is, AD/NC, AD/MCI, MCI/NC and one multiclass classification task AD/NC/MCI. The statistical comparison revealed that 3D-CNN architecture performed the best achieving an accuracy of 89.21% on AD/NC, 71.70% on AD/MCI, 62.25% on NC/MCI and 59.73% on AD/NC/MCI classification tasks using a five-fold cross-validation hyperparameter selection approach. Data augmentation helps in achieving superior performance on the multiclass classification task. The obtained results support the application of deep learning models towards early recognition of AD

    On Disharmony in Batch Normalization and Dropout Methods for Early Categorization of Alzheimer’s Disease

    No full text
    Alzheimer’s disease (AD) is a global health issue that predominantly affects older people. It affects one’s daily activities by modifying neural networks in the brain. AD is categorized by the death of neurons, the creation of amyloid plaques, and the development of neurofibrillary tangles. In clinical settings, an early diagnosis of AD is critical to limit the problems associated with it and can be accomplished using neuroimaging modalities, such as magnetic resonance imaging (MRI) and positron emission tomography (PET). Deep learning (DL) techniques are widely used in computer vision and related disciplines for various tasks such as classification, segmentation, detection, etc. CNN is a sort of DL architecture, which is normally useful to categorize and extract data in the spatial and frequency domains for image-based applications. Batch normalization and dropout are commonly deployed elements of modern CNN architectures. Due to the internal covariance shift between batch normalization and dropout, the models perform sub-optimally under diverse scenarios. This study looks at the influence of disharmony between batch normalization and dropout techniques on the early diagnosis of AD. We looked at three different scenarios: (1) no dropout but batch normalization, (2) a single dropout layer in the network right before the softmax layer, and (3) a convolutional layer between a dropout layer and a batch normalization layer. We investigated three binaries: mild cognitive impairment (MCI) vs. normal control (NC), AD vs. NC, AD vs. MCI, one multiclass AD vs. NC vs. MCI classification problem using PET modality, as well as one binary AD vs. NC classification problem using MRI modality. In comparison to using a large value of dropout, our findings suggest that using little or none at all leads to better-performing designs
    corecore