7 research outputs found

    Gamma rays of 0.3 to 30 MeV from PSR 0531+21

    Get PDF
    Pulsed gamma rays from the Crab Pulsar PSR 0531+21 are reported for energies of 0.3 to 30 MeV. The observations were carried out with the UCR gamma ray double Compton scatter telescope launched on a balloon from Palestine, Texas at 4.5 GV, at 2200 LT, September 29, 1978. Two 8 hr observations of the pulsar were made, the first starting at 0700 UT (0200 LT) September 30 just after reaching float altitude of 4.5 g/sq cm. Analysis of the total gamma ray flux from the Crab Nebula plus pulsar using telescope vertical cell pairs was published previously. The results presented supersede the preliminary ones. The double scatter mode of the UCR telescope measures the energy of each incident gamma ray from 1 to 30 MeV and its incident angle to a ring on the sky. The time of arrival is measured to 0.05 ms. The direction of the source is obtained from overlapping rings on the sky. The count rate of the first scatter above a threshold of 0.3 MeV is recorded every 5.12 ms. The Crab Pulsar parameters were determined from six topocentric arrival times of optical pulses

    Very high energy gamma rays from the Crab Nebula

    Get PDF
    Observations of the Crab pulsar using the atmospheric Cerenkov technique were conducted for 22 hours. The light curve obtained shows a single peak at approximately the position of the expected main peak with a significance level of 3.2 sigma. The pulsed flux above 200 GeV is 2.5 + or - 0.8 x 10 to the 11th power cm(-2)s(-1)

    Measured performance of the new University of California gamma ray telescope

    Get PDF
    The design of the new medium energy balloon-borne gamma ray telescope is discussed. This telescope is sensitive to 1-30 MeV gamma rays. The results of the initial calibration are described. The position and energy resolutions of 32 plastic and NaI(Tl) scintillator bars, each 100 cm long are discussed. The telescope's measured angular and energy resolutions as a function of incident angle are compared with detailed Monte Carlo calculations at 1.37, 2.75 and 6.13 MeV. The expected resolutions are 5 deg FHWM and 8% at 2.75 MeV. The expected area-efficiency is 250 cm

    Gamma radiation from the Crab nebula above 35 MeV

    Get PDF
    Electromagnetic radiation from the Crab nebula were observed, showing that the Crab is unique among strong X-ray sources in that major component in the low energy range (1 to 10 KeV) shows little or no temporal variation. Observations of the Crab above 35 MeV were made with the high energy gamma ray telescope flown on SAS-2. The detector and technique are described in detail

    SAS-2 observations of the diffuse gamma radiation in the galactic latitude interval 10 deg absolute b or equal to 90 deg

    Get PDF
    An analysis of all of the second small astronomy satellite gamma-ray data for galactic latitudes with the absolute value of b 10 deg has shown that the intensity varies with galactic latitude, being larger near 10 deg than 90 deg. For energies above 100 MeV the gamma-ray data are consistent with a latitude distribution of the form I(b) = C sub 1 + C sub 2/sin b, with the second term being dominant. This result suggests that the radiation above 100 MeV is coming largely from local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a good representation of the data, but here the two terms are comparable. These results indicate that the diffuse radiation above 35 MeV consists of two parts, one with a relatively hard galactic component and the other an isotropic, steep spectral component which extrapolates back well to the low energy diffuse radiation. The steepness of the diffuse isotropic component places significant constraints on possible theoretical models of this radiation

    High energy gamma ray results from the second small astronomy satellite

    Get PDF
    A high energy (35 MeV) gamma ray telescope employing a thirty-two level magnetic core spark chamber system was flown on SAS 2. The high energy galactic gamma radiation is observed to dominate over the general diffuse radiation along the entire galactic plane, and when examined in detail, the longitudinal and latitudinal distribution seem generally correlated with galactic structural features, particularly with arm segments. The general high energy gamma radiation from the galactic plane, explained on the basis of its angular distribution and magnitude, probably results primarily from cosmic ray interactions with interstellar matter

    Elemental and chemically specific x-ray fluorescence imaging of biological systems

    Get PDF
    corecore