232 research outputs found

    IMPACTS OF A NEW WATER RESOURCES MANAGEMENT PLAN FOR TUCSON, ARIZONA

    Get PDF
    ABSTRACT Major events during the summer of 1974 led to the beginning of a new, progressive program of water resources management for the City of Tucson. Critical supply shortages during the 1974 peak demand period brought into sharp community focus the need to reassess the previously existing philosophy of meeting continually increasing demand for water with extensive capital construction. An analysis of the impacts resultant from unmanaged peak demands, increased water level declines, potential land surface subsidence, projected increased operational costs and changes in water quality led staff and consultants to formulate and recommend the "Beat the Peak" program. A new philosophy on basin -wide groundwater withdrawals was implemented along with additional programs designed to evaluate the effect of our continued dependence on local groundwater sources. The results of this new management approach have been impressive. Per capita water consumption has been voluntarily reduced, total groundwater pumpage has been reduced and the potential for land surface subsidence is being actively evaluated resulting in direct benefits to Tucson Water and the customers it serves

    All Weather Calibration of Wide Field Optical and NIR Surveys

    Get PDF
    The science goals for ground-based large-area surveys, such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time and uniform over the sky to precisions of a per cent or better. This performance will need to be achieved with data taken over the course of many years, and often in less than ideal conditions. This paper describes a strategy to achieve precise internal calibration of imaging survey data taken in less than photometric conditions, and reports results of an observational study of the techniques needed to implement this strategy. We find that images of celestial fields used in this case study with stellar densities of order one per arcmin-squared and taken through cloudless skies can be calibrated with relative precision of 0.5 per cent (reproducibility). We report measurements of spatial structure functions of cloud absorption observed over a range of atmospheric conditions, and find it possible to achieve photometric measurements that are reproducible to 1 per cent in images that were taken through cloud layers that transmit as little as 25 per cent of the incident optical flux (1.5 magnitudes of extinction). We find, however, that photometric precision below 1 per cent is impeded by the thinnest detectable cloud layers. We comment on implications of these results for the observing strategies of future surveys.Comment: Accepted for publication in The Astronomical Journal (AJ
    • …
    corecore