21 research outputs found

    Singapore's labour force, labour policy and productivity

    No full text
    With increasing global and domestic competition, labour policies haw become one of the most important aspects in governmental economic planning. Though Singapore's workforce is well trained among newly industrialised and developing countries, if must be persistent in upgrading its skills and productivity to meet the challenges aheadACCOUNTANC

    Biologically active indole and bisindole alkaloids from Tabernaemontana divaricata

    No full text
    The ethanol extract of the leaves of Tabernaemontana divaricata (double flower variety) provided a total of 23 alkaloids, including the new aspidosperma alkaloids, taberhanine, voafinine, N-methylvoafinine, voafinidine, voalenine and the new bisindole alkaloid, conophyllinine in addition to the previously known, biologically active bisindole, conophylline and its congener, conofoline. The structures of the new alkaloids were established by spectroscopic methods. The preparation and characterization of the corresponding quinones of the biologically active bisindoles are also described in relation to a structure-activity study of these compounds with respect to their action in stimulating insulin expression

    Botanical Origin Differentiation of Malaysian Stingless Bee Honey Produced by <i>Heterotrigona itama</i> and <i>Geniotrigona thoracica</i> Using Chemometrics

    No full text
    Stingless bee honey, specifically honeydew honey, is generally valued for its better health benefits than those of most blossom types. However, scientific studies about the differentiation of stingless bee honey based on honeydew and blossom origins are very limited. In this study, 13C NMR spectroscopy was employed to quantify the seven major sugar tautomers in stingless bee honey samples, and the major sugar compositions of both honeydew and blossom types were found not significantly different. However, several physicochemical properties of honeydew honey including moisture content, free acidity, electrical conductivity, ash content, acetic acid, diastase, hydrogen peroxide, and mineral elements levels were significantly higher; while total soluble solid, proline, and hydroxymethylfurfural were significantly lower than blossom honey. Greater antioxidant capacity in honeydew honey was proven with higher total phenolic compounds, ABTS, DPPH, superoxide radical scavenging activities, peroxyl radical inhibition, iron chelation, and ferric reducing power. Using principal component analysis (PCA), two clusters of stingless bee honey from the honeydew and blossom origin were observed. PCA also revealed that the differentiation between honeydew and blossom origin of stingless bee honey is possible with certain physicochemical and antioxidant parameters. The combination of NMR spectroscopy and chemometrics are suggested to be useful to determine the authenticity and botanical origin of stingless bee honey

    Optimization of selective mitogen-activated protein kinase interacting kinases 1 and 2 inhibitors for the treatment of blast crisis leukemia

    No full text
    Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by bcr-abl1, a constitutively active tyrosine kinase fusion gene responsible for an abnormal proliferation of leukemic stem cells (LSCs). Inhibition of BCR-ABL1 kinase activity offers long-term relief to CML patients. However, for a proportion of them, BCR-ABL1 inhibition will become ineffective at treating the disease, and CML will progress to blast crisis (BC) CML with poor prognosis. BC-CML is often associated with excessive phosphorylated eukaryotic translation initiation factor 4E (eIF4E), which renders LSCs capable of proliferating via self-renewal, oblivious to BCR-ABL1 inhibition. In vivo, eIF4E is exclusively phosphorylated on Ser209 by MNK1/2. Consequently, a selective inhibitor of MNK1/2 should reduce the level of phosphorylated eIF4E and re-sensitize LSCs to BCR-ABL1 inhibition, thus hindering the proliferation of BC LSCs. We report herein the structure-activity relationships and pharmacokinetic properties of a selective MNK1/2 inhibitor clinical candidate, ETC-206, which in combination with dasatinib prevents BC-CML LSC self-renewal in vitro and enhances dasatinib antitumor activity in vivo.ASTAR (Agency for Sci., Tech. and Research, S’pore

    Optimization of Selective Mitogen-Activated Protein Kinase Interacting Kinases 1 and 2 Inhibitors for the Treatment of Blast Crisis Leukemia

    No full text
    Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by <i>bcr-abl1</i>, a constitutively active tyrosine kinase fusion gene responsible for an abnormal proliferation of leukemic stem cells (LSCs). Inhibition of BCR-ABL1 kinase activity offers long-term relief to CML patients. However, for a proportion of them, BCR-ABL1 inhibition will become ineffective at treating the disease, and CML will progress to blast crisis (BC) CML with poor prognosis. BC-CML is often associated with excessive phosphorylated eukaryotic translation initiation factor 4E (eIF4E), which renders LSCs capable of proliferating via self-renewal, oblivious to BCR-ABL1 inhibition. <i>In vivo</i>, eIF4E is exclusively phosphorylated on Ser209 by MNK1/2. Consequently, a selective inhibitor of MNK1/2 should reduce the level of phosphorylated eIF4E and re-sensitize LSCs to BCR-ABL1 inhibition, thus hindering the proliferation of BC LSCs. We report herein the structure–activity relationships and pharmacokinetic properties of a selective MNK1/2 inhibitor clinical candidate, ETC-206, which in combination with dasatinib prevents BC-CML LSC self-renewal <i>in vitro</i> and enhances dasatinib antitumor activity <i>in vivo</i>

    Optimization of Selective Mitogen-Activated Protein Kinase Interacting Kinases 1 and 2 Inhibitors for the Treatment of Blast Crisis Leukemia

    No full text
    Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by <i>bcr-abl1</i>, a constitutively active tyrosine kinase fusion gene responsible for an abnormal proliferation of leukemic stem cells (LSCs). Inhibition of BCR-ABL1 kinase activity offers long-term relief to CML patients. However, for a proportion of them, BCR-ABL1 inhibition will become ineffective at treating the disease, and CML will progress to blast crisis (BC) CML with poor prognosis. BC-CML is often associated with excessive phosphorylated eukaryotic translation initiation factor 4E (eIF4E), which renders LSCs capable of proliferating via self-renewal, oblivious to BCR-ABL1 inhibition. <i>In vivo</i>, eIF4E is exclusively phosphorylated on Ser209 by MNK1/2. Consequently, a selective inhibitor of MNK1/2 should reduce the level of phosphorylated eIF4E and re-sensitize LSCs to BCR-ABL1 inhibition, thus hindering the proliferation of BC LSCs. We report herein the structure–activity relationships and pharmacokinetic properties of a selective MNK1/2 inhibitor clinical candidate, ETC-206, which in combination with dasatinib prevents BC-CML LSC self-renewal <i>in vitro</i> and enhances dasatinib antitumor activity <i>in vivo</i>
    corecore