603 research outputs found

    The geometry of the close environment of SV Psc as probed by VLTI/MIDI

    Full text link
    Context. SV Psc is an asymptotic giant branch (AGB) star surrounded by an oxygen-rich dust envelope. The mm-CO line profile of the object's outflow shows a clear double-component structure. Because of the high angular resolution, mid-IR interferometry may give strong constraints on the origin of this composite profile. Aims. The aim of this work is to investigate the morphology of the environment around SV Psc using high-angular resolution interferometry observations in the mid-IR with the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI). Methods. Interferometric data in the N-band taken at different baseline lengths (ranging from 32-64 m) and position angles (73- 142{\deg}) allow a study of the morphology of the circumstellar environment close to the star. The data are interpreted on the basis of 2-dimensional, chromatic geometrical models using the fitting software tool GEM-FIND developed for this purpose. Results. The results favor two scenarios: (i) the presence of a highly inclined, optically thin, dusty disk surrounding the central star; (ii) the presence of an unresolved binary companion at a separation of 13.7 AU and a position angle of 121.8{\deg} NE. The derived orbital period of the binary is 38.1 yr. This detection is in good agreement with hydrodynamic simulations showing that a close companion could be responsible for the entrainment of the gas and dust into a circumbinary structure.Comment: 10 pages, 12 figure

    Refractive Index of Humid Air in the Infrared: Model Fits

    Get PDF
    The theory of summation of electromagnetic line transitions is used to tabulate the Taylor expansion of the refractive index of humid air over the basic independent parameters (temperature, pressure, humidity, wavelength) in five separate infrared regions from the H to the Q band at a fixed percentage of Carbon Dioxide. These are least-squares fits to raw, highly resolved spectra for a set of temperatures from 10 to 25 C, a set of pressures from 500 to 1023 hPa, and a set of relative humidities from 5 to 60%. These choices reflect the prospective application to characterize ambient air at mountain altitudes of astronomical telescopes.Comment: Corrected exponents of c0ref, c1ref and c1p in Table

    Charge-conjugation violating neutrino interactions in supernovae

    Get PDF
    The well known charge conjugation violating interactions in the Standard Model increase neutrino- and decrease anti-neutrino- nucleon cross sections. This impacts neutrino transport in core collapse supernovae through "recoil" corrections of order the neutrino energy kk over the nucleon mass MM. All k/Mk/M corrections to neutrino transport deep inside a protoneutron star are calculated from angular integrals of the Boltzmann equation. We find these corrections significantly modify neutrino currents at high temperatures. This produces a large mu and tau number for the protoneutron star and can change the ratio of neutrons to protons. In addition, the relative size of neutrino mean free paths changes. At high temperatures, the electron anti-neutrino mean free path becomes {\it longer} than that for mu or tau neutrinos.Comment: 14 pages, 2 included ps figures, subm. to Phys. Rev.

    Neutrino - nucleon reaction rates in the supernova core in the relativistic random phase approximation

    Get PDF
    In view of the application to supernova simulations, we calculate neutrino reaction rates with nucleons via the neutral and charged currents in the supernova core in the relativistic random phase approximation (RPA) and study their effects on the opacity of the supernova core. The formulation is based on the Lagrangian employed in the calculation of nuclear equation of state (EOS) in the relativistic mean field theory (RMF). The nonlinear meson terms are treated appropriately so that the consistency of the density correlation derived in RPA with the thermodynamic derivative obtained from EOS by RMF is satisfied in the static and long wave length limit. We employ pion and rho meson exchange interactions together with the phenomenological Landau-Migdal parameters for the isospin-dependent nuclear interactions. We find that both the charged and neutral current reaction rates are suppressed from the standard Bruenn's approximate formula considerably in the high density regime. In the low density regime, on the other hand, the vector current contribution to the neutrino-nucleon scattering rate is enhanced in the vicinity of the boundary of the liquid-gas phase transition, while the other contributions are moderately suppressed there also. In the high temperature regime or in the regime where electrons have a large chemical potential, the latter of which is important only for the electron capture process and its inverse process, the recoil of nucleons cannot be neglected and further reduces the reaction rates with respect to the standard approximate formula which discards any energy transfer in the processes. These issues could have a great impact on the neutrino heating mechanism of collapse-driven supernovae.Comment: 16pages, 19figures, submitted to PR

    Neutrino Interactions in Hot and Dense Matter

    Get PDF
    We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star.Comment: 41 pages, 25 figure

    Particle-hole state densities with non-equidistant single-particle levels

    Get PDF
    The correct use of energy-dependent single-particle level (s.p.l.) densities within particle-hole state densities based on the equidistant spacing model (ESM) is analysed. First, an analytical expression is obtained following the convolution of energy-dependent excited-particle and hole densities. Next, a comparison is made with results of the ESM formula using average s.p.l. densities for the excited particles and holes, respectively. The Fermi-gas model (FGM) s.p.l. densities calculated at the corresponding average excitation energies are used in both cases. The analysis concerns also the density of particle-hole bound states. The pairing correlations are taken into account while the comparison of various effects includes the exact correction for the Pauli exclusion principle. Quantum-mechanical s.p.l. densities and the continuum effect can also match a corresponding FGM formula, suitable for use within the average energy-dependent partial state density in multistep reaction models.Comment: 29 pages, ReVTeX, 11 postscript figures, submitted to Phys.Rev.

    Neutrino-Nucleon Interactions in Magnetized Neutron-Star Matter: The Effects of Parity Violation

    Get PDF
    We study neutrino-nucleon scattering and absorption in a dense, magnetized nuclear medium. These are the most important sources of neutrino opacity governing the cooling of a proto-neutron star in the first tens of seconds after its formation. Because the weak interaction is parity violating, the absorption and scattering cross-sections depend asymmetrically on the directions of the neutrino momenta with respect to the magnetic field. We develop the moment formalism of neutrino transport in the presence of such asymmetric opacities and derive explicit expressions for the neutrino flux and other angular moments of the Boltzmann transport equation. For a given neutrino species, there is a drift flux of neutrinos along the magnetic field in addition to the usual diffusive flux. This drift flux depends on the deviation of the neutrino distribution function from thermal equilibrium. Hence, despite the fact that the neutrino cross-sections are asymmetric throughout the star, asymmetric neutrino flux can be generated only in the outer region of the proto-neutron star where the neutrino distribution deviates significantly from thermal equilibrium. In addition to the asymmetric absorption opacity arising from nucleon polarization, we find the contribution of the electron (or positron) ground state Landau level. For neutrinos of energy less than a few times the temperature, this is the dominant source of asymmetric opacity. Lastly, we discuss the implication of our result to the origin of pulsar kicks: in order to generate kick velocity of a few hundred km/s from asymmetric neutrino emission using the parity violation effect, the proto-neutron star must have a dipole magnetic field of at least 1015101610^{15}-10^{16} G.Comment: 35 pages, no figures, submitted to Phys.Rev.

    Relativistic theory of inverse beta-decay of polarized neutron in strong magnetic field

    Full text link
    The relativistic theory of the inverse beta-decay of polarized neutron, νe+np+e\nu _{e} + n \to p + e ^{-}, in strong magnetic field is developed. For the proton wave function we use the exact solution of the Dirac equation in the magnetic filed that enables us to account exactly for effects of the proton momentum quantization in the magnetic field and also for the proton recoil motion. The effect of nucleons anomalous magnetic moments in strong magnetic fields is also discussed. We examine the cross section for different energies and directions of propagation of the initial neutrino accounting for neutrons polarization. It is shown that in the super-strong magnetic field the totally polarized neutron matter is transparent for neutrinos propagating antiparallel to the direction of polarization. The developed relativistic approach can be used for calculations of cross sections of the other URCA processes in strong magnetic fields.Comment: 41 pages in LaTex including 11 figures in PostScript, discussion on nucleons AMM interaction with magnetic field is adde

    Rare association between cystic fibrosis, Chiari I malformation, and hydrocephalus in a baby: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Cystic fibrosis, an epithelial cell transport disorder caused by mutations of the cystic fibrosis transmembrane conductance regulator gene, is not generally associated with malformations of the central nervous system. We review eight previously published reports detailing an infrequent association between cystic fibrosis and Chiari I malformation.</p> <p>Case presentation</p> <p>To the best of our knowledge, our report describes only the ninth case of a baby presenting with a new diagnosis of cystic fibrosis and Chiari I malformation, in this case in a 10-month-old, full-term Caucasian baby boy from the United States of America. Neurosurgical consultation was obtained for associated developmental delay, macrocephaly, bulging anterior fontanel, and papilledema. An MRI scan demonstrated an extensive Chiari I malformation with effacement of the fourth ventricle, obliteration of the outlets of the fourth ventricle and triventricular hydrocephalus without aqueductal stenosis. Our patient was taken to the operating room for ventriculoperitoneal shunt placement.</p> <p>Conclusions</p> <p>It is possible that the cystic fibrosis transmembrane conductance regulator gene may play a previously unrecognized role in central nervous system development; alternatively, this central nervous system abnormality may have been acquired due to constant valsalva from recurrent coughing or wheezing or metabolic and electrolyte imbalances that occur characteristically in cystic fibrosis.</p

    Identification of a Novel Gammaretrovirus in Prostate Tumors of Patients Homozygous for R462Q RNASEL Variant

    Get PDF
    Ribonuclease L (RNase L) is an important effector of the innate antiviral response. Mutations or variants that impair function of RNase L, particularly R462Q, have been proposed as susceptibility factors for prostate cancer. Given the role of this gene in viral defense, we sought to explore the possibility that a viral infection might contribute to prostate cancer in individuals harboring the R462Q variant. A viral detection DNA microarray composed of oligonucleotides corresponding to the most conserved sequences of all known viruses identified the presence of gammaretroviral sequences in cDNA samples from seven of 11 R462Q-homozygous (QQ) cases, and in one of eight heterozygous (RQ) and homozygous wild-type (RR) cases. An expanded survey of 86 tumors by specific RT-PCR detected the virus in eight of 20 QQ cases (40%), compared with only one sample (1.5%) among 66 RQ and RR cases. The full-length viral genome was cloned and sequenced independently from three positive QQ cases. The virus, named XMRV, is closely related to xenotropic murine leukemia viruses (MuLVs), but its sequence is clearly distinct from all known members of this group. Comparison of gag and pol sequences from different tumor isolates suggested infection with the same virus in all cases, yet sequence variation was consistent with the infections being independently acquired. Analysis of prostate tissues from XMRV-positive cases by in situ hybridization and immunohistochemistry showed that XMRV nucleic acid and protein can be detected in about 1% of stromal cells, predominantly fibroblasts and hematopoietic elements in regions adjacent to the carcinoma. These data provide to our knowledge the first demonstration that xenotropic MuLV-related viruses can produce an authentic human infection, and strongly implicate RNase L activity in the prevention or clearance of infection in vivo. These findings also raise questions about the possible relationship between exogenous infection and cancer development in genetically susceptible individuals
    corecore