39 research outputs found

    Assembly line productivity improvement as re-engineered by MOST

    No full text
    The purpose of this paper is to address and solve operational problems of an automotive industry in reaching production target by adopting Maynard Operation Sequence Technique (MOST) as lean and productivity improvement strategies. Design/methodology/approach: In the undertaken case of auto-car rear window assembly line, a recurring production shortfall in fulfilling the daily demand is seemingly due to inappropriate work method. Initial observation of the operations led to suspect certain lapses in initiatives to adopt the time standards, to reduce or eliminate non-value added motions, to design suitable aisle and to assign tasks among workstations in a balanced manner. Subsequently an attempt is made to pinpoint the causes of poor performance and the bottlenecks through process flow analysis and time study by applying MOST. The elemental tasks are closely examined for possible reduction of workstation times by choosing efficient work methods with ergonomic features. Thus appropriate hand tools, jigs and fixture with nominal investment are prescribed to incorporate in the assembly works. The operational changes as steered by the MOST application have enhanced the workflow with a shorter cycle time which led to a substantial increase in productivity. Findings: The productivity of the assembly line is increased by more than 29 percent from the earlier capacity through the MOST application which is deemed to meet the current level of demand. Originality/value: The adopted framework for recognizing the effectiveness of MOST to expose and rectify the flaws in work methods without much investment is expected to be beneficial for a manufacturer in securing the competitiveness

    Photogeneration and Ultrafast Dynamics of Excitons and Charges in P3HT/PCBM Blends

    Get PDF
    The photogeneration quantum yield and dynamics of charge carriers and excitons in thin films of neat regioregular poly(3-hexylthiophene) (P3HT) and blends with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were studied with ultrafast optical pump-probe spectroscopy. In neat P3HT the quantum yield for direct photogeneration of charge carriers amounts to 0.15 per absorbed photon. The remaining fraction of absorbed photons leads to formation of excitons. Recombination of charges reduces the quantum yield to about 25% of its initial value on a time scale of 100 ps followed by decay to a no longer observable yield after 1 ns. Addition of 50% PCBM by weight leads to ultrafast (<200 fs) formation of charge pairs with a total quantum yield of 0.5. The presence of 50% PCBM causes exciton decay to be about an order of magnitude faster than in neat P3HT, which is expected to be at least in part due to interfacial exciton dissociation into charge carriers. The yield of charges in the blend has decayed to about half its initial value after 100 ps, while no further decay is observed within 1 ns. The small fraction (~1%) of excitons in neat P3HT that is probed by photoluminescence measurements has a lifetime of 660 ps, which significantly exceeds the 200 ps lifetime of nonfluorescent excitons that are probed by transient absorption measurements. The nonfluorescent excitons have a diffusion coefficient of about 2 × 10-4 cm2/s, which is an order of magnitude smaller than reported values for fluorescent excitons. The interaction radius for second-order decay of photoexcitations is as large as 8-17 nm, in agreement with an earlier result in the literature.

    Validation and utilization of an internally controlled multiplex Real-time RT-PCR assay for simultaneous detection of enteroviruses and enterovirus A71 associated with hand foot and mouth disease

    No full text
    Background: Hand foot and mouth disease (HFMD) is a disease of public health importance across the Asia-Pacific region. The disease is caused by enteroviruses (EVs), in particular enterovirus A71 (EV-A71). In EV-A71-associated HFMD, the infection is sometimes associated with severe manifestations including neurological involvement and fatal outcome. The availability of a robust diagnostic assay to distinguish EV-A71 from other EVs is important for patient management and outbreak response. Methods: We developed and validated an internally controlled one-step single-tube real-time RT-PCR in terms of sensitivity, linearity, precision, and specificity for simultaneous detection of EVs and EV-A71. Subsequently, the assay was then applied on throat and rectal swabs sampled from 434 HFMD patients. Results: The assay was evaluated using both plasmid DNA and viral RNA and has shown to be reproducible with a maximum assay variation of 4.41 % and sensitive with a limit of detection less than 10 copies of target template per reaction, while cross-reactivity with other EV serotypes was not observed. When compared against a published VP1 nested RT-PCR using 112 diagnostic throat and rectal swabs from 112 children with a clinical diagnosis of HFMD during 2014, the multiplex assay had a higher sensitivity and 100 % concordance with sequencing results which showed EVs in 77/112 (68.8 %) and EV-A71 in 7/112 (6.3 %). When applied to clinical diagnostics for 322 children, the assay detected EVs in throat swabs of 257/322 (79.8 %) of which EV-A71 was detected in 36/322 (11.2 %) children. The detection rate increased to 93.5 % (301/322) and 13.4 % (43/322) for EVs and EV-A71, respectively, when rectal swabs from 65 throat-negative children were further analyzed. Conclusion: We have successfully developed and validated a sensitive internally controlled multiplex assay for rapid detection of EVs and EV-A71, which is useful for clinical management and outbreak control of HFMD
    corecore