10,976 research outputs found

    A Coupled AKNS-Kaup-Newell Soliton Hierarchy

    Full text link
    A coupled AKNS-Kaup-Newell hierarchy of systems of soliton equations is proposed in terms of hereditary symmetry operators resulted from Hamiltonian pairs. Zero curvature representations and tri-Hamiltonian structures are established for all coupled AKNS-Kaup-Newell systems in the hierarchy. Therefore all systems have infinitely many commuting symmetries and conservation laws. Two reductions of the systems lead to the AKNS hierarchy and the Kaup-Newell hierarchy, and thus those two soliton hierarchies also possess tri-Hamiltonian structures.Comment: 15 pages, late

    Universal Boundary Entropies in Conformal Field Theory: A Quantum Monte Carlo Study

    Full text link
    Recently, entropy corrections on nonorientable manifolds such as the Klein bottle are proposed as a universal characterization of critical systems with an emergent conformal field theory (CFT). We show that entropy correction on the Klein bottle can be interpreted as a boundary effect via transforming the Klein bottle into an orientable manifold with nonlocal boundary interactions. The interpretation reveals the conceptual connection of the Klein bottle entropy with the celebrated Affleck-Ludwig entropy in boundary CFT. We propose a generic scheme to extract these universal boundary entropies from quantum Monte Carlo calculation of partition function ratios in lattice models. Our numerical results on the Affleck-Ludwig entropy and Klein bottle entropy for the qq-state quantum Potts chains with q=2,3q=2,3 show excellent agreement with the CFT predictions. For the quantum Potts chain with q=4q=4, the Klein bottle entropy slightly deviates from the CFT prediction, which is possibly due to marginally irrelevant terms in the low-energy effective theory.Comment: 10 pages, 4 figures. Published versio

    Phonon anomaly in BaFe2As2

    Full text link
    The detailed optical properties of BaFe2As2 have been determined over a wide frequency range above and below the structural and magnetic transition at T_N = 138 K. A prominent in-plane infrared-active mode is observed at 253 cm^{-1} (31.4 meV) at 295 K. The frequency of this vibration shifts discontinuously at T_N; for T < T_N the frequency of this mode displays almost no temperature dependence, yet it nearly doubles in intensity. This anomalous behavior appears to be a consequence of orbital ordering in the Fe-As layers.Comment: 4 pages, 3 figures and one table (minor revisions

    Observation of an in-plane magnetic-field-driven phase transition in a quantum Hall system with SU(4) symmetry

    Full text link
    In condensed matter physics, the study of electronic states with SU(N) symmetry has attracted considerable and growing attention in recent years, as systems with such a symmetry can often have a spontaneous symmetry-breaking effect giving rise to a novel ground state. For example, pseudospin quantum Hall ferromagnet of broken SU(2) symmetry has been realized by bringing two Landau levels close to degeneracy in a bilayer quantum Hall system. In the past several years, the exploration of collective states in other multi-component quantum Hall systems has emerged. Here we show the conventional pseudospin quantum Hall ferromagnetic states with broken SU(2) symmetry collapsed rapidly into an unexpected state with broken SU(4) symmetry, by in-plane magnetic field in a two-subband GaAs/AlGaAs two-dimensional electron system at filling factor around ν=4\nu=4. Within a narrow tilting range angle of 0.5 degrees, the activation energy increases as much as 12 K. While the origin of this puzzling observation remains to be exploited, we discuss the possibility of a long-sought pairing state of electrons with a four-fold degeneracy.Comment: 13 pages, 4 figure

    Binary Nonlinearization of Lax pairs of Kaup-Newell Soliton Hierarchy

    Full text link
    Kaup-Newell soliton hierarchy is derived from a kind of Lax pairs different from the original ones. Binary nonlinearization procedure corresponding to the Bargmann symmetry constraint is carried out for those Lax pairs. The proposed Lax pairs together with adjoint Lax pairs are constrained as a hierarchy of commutative, finite dimensional integrable Hamiltonian systems in the Liouville sense, which also provides us with new examples of finite dimensional integrable Hamiltonian systems. A sort of involutive solutions to the Kaup-Newell hierarchy are exhibited through the obtained finite dimensional integrable systems and the general involutive system engendered by binary nonlinearization is reduced to a specific involutive system generated by mono-nonlinearization.Comment: 15 pages, plain+ams tex, to be published in Il Nuovo Cimento

    Direct conversion of methanol to n-C4H10 and H-2 in a dielectric barrier discharge reactor

    Get PDF
    Methanol is an important H-carrier and C1 chemical feedstock. In this paper, a direct conversion of methanol to n-C4H10 and H2 was achieved for the first time in a dielectric barrier discharge (DBD) non-thermal plasma reactor. The selective formation of n-C4H10 by limiting COx (x = 1 and 2) generation was obtained by optimizing different plasma processing parameters including the methanol inlet concentration, discharge power, and pre-heating temperature. The results showed that a higher methanol inlet concentration and a higher pre-heating temperature favors the formation of n-C4H10, while a higher methanol inlet concentration and a lower discharge power can effectively limit the formation of CO. The optimal selectivity for n-C4H10 (37.5%), H2 (28.9%) and CO (14%) was achieved, with a methanol conversion of 40.0%, at a methanol inlet concentration of 18 mol%, a discharge power of 30 W and a pre-heating temperature of 140 °C using N2 as a carrier gas. Value-added liquid chemicals (e.g., alcohols, acids, and heavy hydrocarbons) were also obtained from this reaction. Emission spectroscopy diagnostics reveals the formation of various reactive species (e.g., CH, C2, CN, H and metastable N2) in the CH3OH/N2 DBD. Possible reaction pathways for the formation of n-C4H10 were proposed and discussed

    Multispace and Multilevel BDDC

    Full text link
    BDDC method is the most advanced method from the Balancing family of iterative substructuring methods for the solution of large systems of linear algebraic equations arising from discretization of elliptic boundary value problems. In the case of many substructures, solving the coarse problem exactly becomes a bottleneck. Since the coarse problem in BDDC has the same structure as the original problem, it is straightforward to apply the BDDC method recursively to solve the coarse problem only approximately. In this paper, we formulate a new family of abstract Multispace BDDC methods and give condition number bounds from the abstract additive Schwarz preconditioning theory. The Multilevel BDDC is then treated as a special case of the Multispace BDDC and abstract multilevel condition number bounds are given. The abstract bounds yield polylogarithmic condition number bounds for an arbitrary fixed number of levels and scalar elliptic problems discretized by finite elements in two and three spatial dimensions. Numerical experiments confirm the theory.Comment: 26 pages, 3 figures, 2 tables, 20 references. Formal changes onl

    Robust object tracking using linear neighborhood propagation

    Full text link
    Object tracking is widely used in many applications such as intelligent surveillance, scene understanding, and behavior analysis. Graph-based semisupervised learning has been introduced to deal with specific tracking problems. However, existing algorithms following this idea solely focus on the pairwise relationship between samples and hence could decrease the classification accuracy for unlabeled samples. On the contrary, we regard tracking as a one-class classification issue and present a novel graph-based semisupervised tracker. The proposed tracker uses linear neighborhood propagation, which aims to exploit the local information around each data point. Moreover, the manifold structure embedded in the whole sample set is discovered to allow the tracker to better model the target appearance, which is crucial to resisting the appearance variations of the object. Experiments on some public-domain sequences show that the proposed tracker can exhibit reliable tracking performance in the presence of partial occlusions, complicated background, and appearance change
    corecore